Il teorema di Cheeger-Gromoll, o Teorema dell'anima, è un teorema di Geometria riemanniana che in larga misura riconduce lo studio delle varietà geometriche complete di curvatura sezionale non negative al caso delle varietà compatte (chiuse e finite). Jeff Cheeger e Detlef Gromoll dimostrarono il teorema nel 1972 generalizzando un risultato ottenuto nel 1969 dallo stesso Gromoll e da Wolfgang Meyer. La correlata congettura dell'anima fu formulata da Gromoll e Cheeger nel 1972, e dimostrata da Grigorij Jakovlevič Perel'man nel 1994 in un modo sorprendente e conciso.
Il teorema dell'anima asserisce che
La sottovarietà S è detta anima di (M, g).
L'anima S non è in generale identificata univocamente da (M, g), ma due anime qualsiasi sono isometriche, come ha dimostrato Sharafutdinov nel 1979, usando la retrazione di Sharafutdinov.
Ogni varietà compatta possiede una propria anima. Tuttavia, spesso il teorema è usato solo per varietà non compatte.
Come esempio semplice, si prenda M coincidente con lo spazio euclideo Rn, allora la sua curvatura sezionale è 0 e un punto qualsiasi di M può essere usato come anima di M.
Si consideri ora il paraboloide M = {(x, y, z) : z = x2 + y2}, in cui la metrica g è la distanza euclidea ordinaria che si genera dall'immersione dei M in uno spazio euclideo R3. La curvatura sezionale è ovunque positiva. L'origine (0, 0, 0) è un'anima di M. Non tutti i punti x di M sono un'anima di M, dal momento che possiamo avere dei loop geodesici basati su x.
Esaminiamo ora un cilindro infinito M = {(x, y, z) : x2 + y2 = 1}, di nuovo insieme alla metrica euclidea indotta. La curvatura sezionale è ovunque nulla. Ogni circonferenza "orizzontale" {(x, y, z) : x2 + y2 = 1} con z fissato è un'anima di M.
La congettura dell'anima, formulata da Cheeger e Gromoll, asserisce che:
Perel'man ha dimostrato questa congettura stabilendo che nel caso generale K ≥ 0, la retrazione di Sharafutdinov P : M → S è una sommersione, ovvero una funzione differenziabile tra varietà differenziabili il cui differenziale è ovunque suriettivo.