^ abcdeSeckbach, J. (1999). “The Cyanidiophyceae: Hot spring acidophilic algae”. In J. Seckbach. Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Academic Publishers. pp. 425-435. ISBN978-1-4020-1863-3
^ abcdefghijklmSeckbach, J. (2010). “Overview on cyanidian biology”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer, Netherlands. pp. 345-356. ISBN978-90-481-3794-7
^Bailey, R. W. & Staehelin, L. A. (1968). “The chemical composition of isolated cell walls of Cyanidium caldarium”. Microbiology54: 269-276.
^Kuroiwa, T., Kawazu, T., Takahashi, H., Suzuki, K., Ohta, N. & Kuroiwa, H. (1994). “Comparison of ultrastructures between the ultra-small eukaryote Cyanidioschyzon merolae and Cyanidium caldarium”. Cytologia59: 149-158. doi:10.1508/cytologia.59.149.
^ abcAllen, M. B. (1959). “Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte”. Archiv für Mikrobiologie32: 270-277.
^Stec, B., Troxler, R. F. & Teeter, M. M. (1999). “Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly”. Biophysical Journal76: 2912-2921. doi:10.1016/S0006-3495(99)77446-1.
^Takaichi, S., Yokoyama, A., Mochimaru, M., Uchida, H. & Murakami, A. (2016). “Carotenogenesis diversification in phylogenetic lineages of Rhodophyta”. J. Phycol.52: 329–338. doi:10.1111/jpy.12411.
^Hirabaru, C., Izumo, A., Fujiwara, S., Tadokoro, Y., Shimonaga, T. & al. (2010). “The primitive rhodophyte Cyanidioschyzon merolae contains a semiamylopectin-type, but not an amylose-type, α-glucan”. Plant Cell Physiol.51: 682-693. doi:10.1093/pcp/pcq046.
^Shimonaga, T., Fujiwara, S., Kaneko, M., Izumo, A., Nihei, S., Francisco Jr, P. B., ... & Tsuzuki, M. (2007). “Variation in storage α-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium”. Marine Biotechnology9: 192-202. doi:10.1007/s10126-006-6104-7.
^Pade, N., Linka, N., Ruth, W., Weber, A. P. & Hagemann, M. (2015). “Floridoside and isofloridoside are synthesized by trehalose 6‐phosphate synthase‐like enzymes in the red alga Galdieria sulphuraria”. New Phytologist205: 1227-1238. doi:10.1111/nph.13108.
^Reeb, V. & Bhattacharya, D. (2010). “The thermo-acidophilic Cyanidiophyceae (Cyanidiales)”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer Netherlands. pp. 409-426. ISBN978-90-481-3794-7
^Gross, W. & Schnarrenberger, C. (1995). “Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria”. Plant Cell Physiol.36: 633-638. doi:10.1093/oxfordjournals.pcp.a078803.
^Oesterhelt, C. & Gross, W. (2002). “Different sugar kinases are involved in the sugar sensing of Galdieria sulphuraria”. Plant Physiol.128: 291-299. doi:10.1104/pp.010553.
^Seckbach, J. & Libby, W. F. (1970). “Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures”. Space Life Sciences2: 121-143. doi:10.1017/S0074180900102645.
^Nagasaka, S., Nishizawa, N.K., Negishi, T., Satake, K., Mori, S. & Yoshimura, E. (2002). “Novel iron-storage particles may play a role in aluminum tolerance of Cyanidium caldarium”. Planta215: 399–404. doi:10.1007/s00425-002-0764-y.
^Yoshimura, E., Nagasaka, S., Sato, Y., Satake, K. & Mori, S. (1999). “Extraordinary high aluminium tolerance of the acidophilic thermophilic alga, Cyanidium caldarium”. Soil. Sci. Plant Nutr.45: 721–724. doi:10.1080/00380768.1999.10415835.
^Ju, X., Igarashi, K., Miyashita, S. I., Mitsuhashi, H., Inagaki, K., Fujii, S. I., ... & Minoda, A. (2016). “Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria”. Bioresource Technology211: 759-764. doi:10.1016/j.biortech.2016.01.061.
^Ohta, N., Sato, N. & Kuroiwa T. (1998). “Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence”. Nucleic Acids Res.26: 5190–5198. doi:10.1093/nar/26.22.5190.
^Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, SY., Nozaki, H., Tanaka, K., Shin-I, T., Kohara, Y. & Kuroiwa, T. (2003). “Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae”. DNA Res.10: 67–77. doi:10.1093/dnares/10.2.67.
^Matsuzaki, M., Misumi, O., Shin-I, T., Maruyama, S., Takahara, M., Miyagishima, SY., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. & Kuroiwa, T. (2004). “Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D.”. Nature428: 653-657. doi:10.1038/nature02398.
^Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. & Weber, A.P. (2005). “Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae.”. Plant Physiology137: 460-474. doi:10.1104/pp.104.051169.
^Schönknecht, G., Chen, W.H., Ternes, C.M., Barbier, G.G., Shrestha, R.P., Stanke, M., Bräutigam, A., Baker, B.J., Banfield, J.F., Garavito, R.M., Carr, K., Wilkerson, C., Rensing, S.A., Gagneul, D., Dickenson, N.E., Oesterhelt, C., Lercher, M.J., & Weber, A.P. (2013). “Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote”. Science339: 1207–1210. doi:10.1126/science.1231707.
^ abcdefgLiu, S. L., Chiang, Y. R., Yoon, H. S. & Fu, H. Y. (2020). “Comparative genome analysis reveals Cyanidiococcus gen. nov., a new extremophilic red algal genus sister to Cyanidioschyzon (Cyanidioschyzonaceae, Rhodophyta)”. Journal of Phycology56 (6): 1428-1442. doi:10.1111/jpy.13056.
^ abReeb, V. & Bhattacharya, D. (2010). “The thermo-acidophilic Cyanidiophyceae (Cyanidiales)”. In Seckbach, J. & Chapman, D.J.. Red Algae in the Genomic Age. Springer Netherlands. pp. 409-426. ISBN978-90-481-3794-7
^Toplin, J.A., Norris, T.B., Lehr, C.R., McDermott, T.R. & Castenholz, R.W. (2008). “Biogeographic and phylogenetic diversity of thermoacidophilic cyanidiales in Yellowstone National Park, Japan, and New Zealand”. Appl. Environ. Microbiol.74: 2822–2833. doi:10.1128/AEM.02741-07.
^Gross, W., Küver, J., Tishchendorf, G., Bouchaala, N. and Büsch, W. (1998). “Cryptoendolithic growth of the red alga Galdieria sulphuraria in volcanic areas”. Eur. J. Phycol.33: 25–31. doi:10.1080/09670269810001736503.
^Yoon, H.S., Ciniglia, C., Wu, M., Comeron, J.M., Pinto, G., Pollio, A. & Bhattacharya, D. (2006). “Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta)”. BMC Evol. Biol.6: 78. doi:10.1186/1471-2148-6-78.
^Hoffmann, L. (1994). “Cyanidium-like algae from caves”. Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Springer, Dordrecht. pp. 175-182. ISBN0792326350
^Iovinella, M., Eren, A., Pinto, G., Pollio, A., Davis, S. J., Cennamo, P. & Ciniglia, C. (2018). “Cryptic dispersal of Cyanidiophytina (Rhodophyta) in non-acidic environments from Turkey”. Extremophiles22: 713-723. doi:10.1007/s00792-018-1031-x.
^Geitler, L. & Ruttner, F. (1936). “Die Cyanophyceen der deutschen limnologischen Sunda-Expedition, ihre Morphologie, Systematik und Ökologie”. Archiv für Hydrobiologie, Tropische Binnengewässer14: 308-369, 371-483.
^Hirose, H. (1950). “Studies on a thermal alga, Cyanidium caldarium”. Bot. Mag.63: 107-111.
^Allen, M. B. (1952). “The cultivation of Myxophyceae”. Archives of Microbiology17: 34-53.
^Bourrelly, P. (1970). Les Algues d'Eau Douce. Ill. Les Algues Bleues, et Rouges. N. Boub6e & Cie, Paris. pp. 256
^Brock, T. D. (1978) Thermophilic Microorganisms and Life at High Temperatures. Springer, New York, Heidelberg, Berlin, 465 pp.
^Fredrick, J. F. (1976). “Cyanidium caldarium as a bridge alga between Cyanophyceae and Rhodophyceae: Evidence from immunodiffusion studies”. Plant and Cell Physiology17: 317-322. doi:10.1093/oxfordjournals.pcp.a075284.
^Silva, P. C. (1962). “Taxonomy”. In Lewin, R. A.. Physiology and Biochemistry of Algae. Academic Press, New York. pp. 827-837
^Kremer, B. P. (1982). “Cyanidium caldarium: a discussion of biochemical features and taxonomic problems”. British Phycological Journal17: 51-61. doi:10.1080/00071618200650071.
^Seckbach, J. (1995). “The first eukaryotic cells — acid hot-spring algae”. Journal of Biological Physics20: 335-345. doi:10.1007/BF00700452.
^Nagashima, H. (1981). “Morphological properties of Cyanidium caldarium and related algae in Japan”. Jap. J. Phycol.29: 237-242.
^ abSaunders, G.W. & Hommersand, M.H. (2004). “Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data”. Am. J. Bot.91: 1494-1507. doi:10.3732/ajb.91.10.1494.
^ abYoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. & Bhattacharya, D. (2006). “Defining the major lineages of red algae (Rhodophyta)”. J. Phycol.42: 482-492. doi:10.1111/j.1529-8817.2006.00210.x.
^ abcMerola, A., Castaldo, R., Luca, P.D., Gambardella, R., Musacchio, A. & al. (1981). “Revision of Cyanidium caldarium. Three species of acidophilic algae.”. Giornale Botanico Italiano115: 189-195. doi:10.1080/11263508109428026.
^Kamiya, M., Lindstrom, S. C., Nakayama, T., Yokoyama, A., Lin, S. M., Guiry, M. D., ... & Cho, T. O. (2017). Syllabus of plant families ‐ A. Engler's Syllabus der Pflanzenfamilien Part 2/2: Photoautotrophic eukaryotic algae ‐ Rhodophyta. Borntraeger Science Publishers, Berlin. pp. 171. ISBN978-3-443-01094-2
^ abCiniglia, C., Yoon, H. S., Pollio, A., Pinto, G. & Bhattacharya, D. (2004). “Hidden biodiversity of the extremophilic Cyanidiales red algae”. Molecular Ecology13: 1827-1838. doi:10.1111/j.1365-294X.2004.02180.x.
^ abHsieh, C.J., Zhan, S.H., Lin, Y., Tang, S.L. & Liu, S.L. (2015). “Analysis of rbcL sequences reveals the global biodiversity, community structure, and biogeographical pattern of thermoacidophilic red algae (Cyanidiales)”. J. Phycol.51: 682-694. doi:10.1111/jpy.12310.
^ abcCiniglia, C., Cennamo, P., De Natale, A., De Stefano, M., Sirakov, M., Iovinella, M., ... & Pollio, A. (2019). “Cyanidium chilense (Cyanidiophyceae, Rhodophyta) from tuff rocks of the archeological site of Cuma, Italy”. Phycological Research. doi:10.1111/pre.12383.
^Skorupa, D.J., Reeb, V., Castenholz, R.W., Bhattacharya, D., & McDermott, T.R. (2013). “Cyanidiales diversity in Yellowstone National Park”. Lett. Applied Microbiology57: 459–466. doi:10.1111/lam.12135.
^ abWynne, M. J. & Schneider, C. W. (2010). “Addendum to the synoptic review of red algal genera”. Botanica Marina53: 291-299. doi:10.1515/BOT.2010.039.