ポペットバルブ(英: Poppet Valve)は、JISにおいて「弁体が弁座シート面から直角方向に移動する形式のバルブ」と定義されている[1]。レシプロエンジンの吸気、掃気、排気を制御するために多く用いられる弁機構であり、特に自動車用エンジンなどでは単にバルブと呼ばれることも多い。
ポペットバルブのポペット(Poppet)とは、人形を意味する「Puppet」(パペット)と語源を共有する。"若者"か"人形"を意味する中フランス語の「poupette」や、中英語の「popet」(popetはpoupeの縮小辞)が語源であるとされている。
ポペットバルブにポペットの単語が与えられた理由は、操縦者のリモート操作によって一定の動きを行うマリオネットと、ポペットバルブの単調な往復運動が重ね合わされたからである[2]。よって、かつてはポペットバルブとパペットバルブ (Puppet Valve) という呼び方が混在し、同義語として用いられていた時期もあったが、現在ではパペットバルブという用語は完全に廃れてしまっている[3][4]。
ポペットバルブはステムと呼ばれる棒状の部分と、円形または楕円形の傘型(キノコ型)の傘部から構成される。バルブ全体がステムの軸方向に摺動することにより、弁座(バルブシート)と傘部の間隔が変化して流量を制御する。このために摺動量の制御機構が別途必要となる。開方向のみを制御して閉じる力はバルブスプリングによることが多いが、ポペットバルブも弁座も共に精密に加工されているため、閉じた状態であれば流体の圧力で押さえられるだけでも気密性は発揮できる[5]。
圧力差のみを利用してポペットバルブの開閉を制御している機器も多い。その一例がタイヤのエアバルブとして用いられる仏式バルブや米式バルブである。米式バルブは閉じ側制御用のスプリングが備えられているが、仏式バルブはこうしたスプリングを一切持たず、純粋にタイヤの内部空気圧のみでポペットバルブを閉じている。
レシプロエンジン以外にも、ポペットバルブは多くのロケット燃料の流量制御や、ミルクの流量を制御する工業プロセス、油圧システムで使用される。半導体産業は遮断弁としてしばしば極清浄ポペットバルブを使用する。 ここに、一般的なポペットバルブのアニメーションを示す。
ポペットバルブはクランクケース圧縮式のガソリン2ストロークエンジンを除く現代のほとんどのレシプロエンジンで使用されていて、シリンダーヘッドの吸気ポートと排気ポートに配置されている。バルブステムがシリンダーヘッドのバルブガイドに通されており、気流を制御するための弁の開閉はカムシャフトのカムによって行われる。ポペットバルブはバルブリフターを介しカムに押されるか、タペットを介してカムシャフトで作動するロッカーアームに押されることで押し開かれる。
イタリアのオートバイメーカー、ドゥカティのエンジンではバルブスプリングを持たず、カムシャフトが機械的にポペットバルブを閉鎖するデスモドロミックを採用している。これは超高回転域におけるカムへの追従性悪化によるバルブサージングを防止するための機構である。通常のエンジンでは閉じ側にコイルスプリングを使用することが多く、サージング防止のため、摩擦の増大と引き換えにばね定数を高める、固有振動数が異なる2つのスプリングを組み合わせる、スプリングそのものを不等ピッチや円錐状とする、などの対策で共振を防いでいる。常用回転数が18,000 rpmに達したF1用エンジンなどでは、コイルスプリングで共振を防ぐことは難しく、共振周波数の高いトーションバースプリングや、高圧の気体を用いてバルブを閉じるニューマチックバルブスプリングを用いている。
ポペットバルブは鋼鉄などの頑丈な金属を用いて製造されるが、一部の高出力エンジンではバルブの材料にチタンを用いることもある。これはポペットバルブの慣性質量を減らすための措置であり、バルブコッターやリテーナーも同様に軽量化が行われることも多い。また、部位によって要求される性質が異なるため、ステムやステム端部と傘部を別々の材料で作ったりすることがある。高出力エンジンの場合、特に高い温度の排気に晒される排気バルブの熱伝導特性を改良するため、ナトリウム封入バルブを用いることがある。ステムをドリル切削するなどして中空構造とし、この半分程度にナトリウムを封入したものである。ポペットバルブの往復によりナトリウムがステム内を往復し、燃焼室側からバルブガイドへと熱を逃がしやすくする。また、中空化と鋼より密度の低いナトリウムを使用することでポペットバルブの軽量化も見込める。排気バルブには耐熱性を高めるためインコネル等の耐熱合金を使用することもある。
ポペットバルブは吸気と排気に1シリンダーあたりそれぞれ1本以上ずつ用いられる。OHVやSOHCが主流の時代には吸排気効率向上のためにポペットバルブの外径を大きくするビッグバルブが用いられたが、バルブの慣性質量の増加で高回転での追従性が悪化し、その割に開口面積がさほど拡大されず効率が上がらないため、後に吸排気それぞれに複数のバルブを配置するマルチバルブ構成が普及した。初めは吸気2・排気1の3バルブ構成、後にDOHCの普及とともに吸気2・排気2の4バルブ構成が一般化し、一部には吸気3・排気2の5バルブのエンジンもある。1シリンダーあたり最大のバルブ数を持つ現在までに市販されたエンジンは、楕円ピストンの採用で吸気4・排気4の8バルブとしたホンダ・NRのものである。
また、吸気バルブの開閉タイミングやリフト量を回転数や負荷に応じて可変させることで燃焼室への混合気流入速度を変化させ、高回転域での出力と低回転域での実用トルクの両立を実現した可変バルブ機構は、近年では軽自動車や大衆車などでも自動車排出ガス規制などへの対応や燃費向上のためにごく一般的に使用されるようになった。さらには吸気バルブのタイミングやリフトの可変量を拡大して、その制御でスロットルバルブに代わって出力を制御するバルブトロニックのような技術も現れている
かつての鋳鉄製シリンダーヘッドでは、シリンダーヘッドに穿たれたバルブ穴にポペットバルブが直接差し込まれていたが、後に摩耗を抑えるために鋼鉄やリン青銅などで製作されたバルブガイドがヘッドに挿入されるようになり、燃焼室側にも傘部との接触面にバルブシートが取り付けられるようになった。
ポペットバルブのステムはヘッドカバー内に直接突き出る形になるため、そのままでは吸排気ポートのガスがカムシャフト側に吹き抜けたり、カムシャフトルーム内のエンジンオイルが吸排気ポート内に吸い出されるオイル下がりが発生する。そのため、バルブステムには熱と摩擦に強いフッ素ゴム製のバルブステムシールが挿入され、密封性を保つようになっている。
バルブガイド、バルブシート、バルブステムシールともに今日では消耗部品の一つであり、これらが摩耗・劣化することでオイル下がりが起こる。このような状態の車両はシリンダー内でエンジンオイルが燃えるため、始動時やエンジンブレーキ使用時に排気が白煙となり、オイルの燃える臭いもするので判別が可能である。
第二次世界大戦前後までの黎明期の車両用エンジンは、ポペットバルブはシリンダーと平行に逆さの状態で配置された。これは一般的にはサイドバルブ(SV)と呼ばれ、シリンダーヘッドの外形が平たかったためにしばしばフラットヘッドとも呼ばれた。この形式は極めて簡素な構造で信頼性や耐久性も高かったことから第二次世界大戦中の軍用車両では積極的に用いられたこともあった。しかし燃焼室が横に長く伸びる形状となることと、吸気と排気が同じ側に向かうターンフロー(カウンターフロー)構造しか採れなかったことから、吸排気効率が非常に悪くて最高回転数は2000-3000rpm程度に限定され、またこの燃焼室形状では大きな表面積により冷却損失が大きいために熱効率が低く、しかも排気がシリンダー側面を這うように出て行くために放熱を妨げるなど、エンジン性能面では不都合が多かった。
そのため、戦前頃からSVをベースにシリンダーヘッド側にポペットバルブを配置するOHV(頭上弁)形式が登場した。当初のOHVは楔(ウェッジ)形燃焼室やターンフローなどのSV時代の影響が強いデザインが多かったが、後にクライスラー・ヘミエンジンなどから、吸排気バルブ間に角度を持たせて配置することで燃焼室形状が表面積の小さな半球型へと変わるとともに、吸気から排気へとヘッドを横切って流れていくクロスフロー構造に移行していき、熱効率と最高回転数が大幅に向上したOHVがSVに代わって主流となった。
当初のOHVでロッカーアームを押してポペットバルブを開いていたのは、クランクシャフトとほぼ同じ高さにあるカムシャフトからの長いプッシュロッドだった。しかしこれの慣性質量の大きさが追従性を下げていて高回転高性能化の妨げだったため、プッシュロッドを短く軽くしたハイカムOHVを経て、ついにはプッシュロッドを無くしたOHC形式(SOHCあるいはDOHC)が登場し、現在では多くのエンジンに採用されている。ただし特にV型エンジンにおいては、両バンクのバルブ開閉をバンク間に配置した1本のカムシャフトで賄え、その場合でもハイカムにはなることから、OHCだけでなくプッシュロッドを用いるOHVも採用され続けている。
初期のガソリンエンジンでは現在よりも冶金技術が稚拙だったこともあり、ポペットバルブの摩耗は大きな問題として取り扱われた。バルブの潤滑に関する問題は蒸気機関時代の1866年に物理学者のジョン・エリスの手により鉱物油が開発され、バルボリンが「バルブ・オイル」として開発したことで解決していたが、バルブガイドとバルブシートの摩耗については約2年に一回程度の割合で、後述のバルブメンテナンスを専門技術者が行わなければならず、車両のオーナーは多大な労力と出費を払わなければならなかった。しかし、燃料にテトラエチル鉛を加えることで鉛成分がバルブシートやバルブガイドを覆い、摩耗を大幅に減少することが明らかとなり、有鉛ガソリンとして幅広く用いられるようになった。
有鉛ガソリンは1970年代頃までは市販ガソリンの主流であったが、有毒なテトラエチル鉛が環境対策で規制され始めたことや、ステライトやリン青銅などの耐摩耗性が非常に大きい合金が実用化されると、有鉛燃料は不要となり、次第に姿を消していった。
ガソリン無鉛化の過渡期には、それまでの有鉛ガソリン仕様のエンジンについてはバルブシートやバルブガイドを対策部品に交換したり、新車でも走行状況に応じて高速有鉛などの表記が行われた車両が存在するなどしていた。現在でもまだ無鉛化対策を行っていない車両用に、ガソリンスタンドには有鉛ガソリン車向けの燃料添加剤が販売されている事もある。
この節の加筆が望まれています。 |
耐摩耗性が非常に高いバルブガイドやバルブシートが一般化した現在の自動車用エンジンでは、10万キロ以上動弁系のメンテナンスが不要なことも珍しくはなくなった。
しかし、経年使用に応じて各部の摩耗は確実に進んでいくため、下記のメンテナンスを必要に応じて実施することでエンジンの初期性能を長期にわたって適正に保つことが可能となる。
この節の加筆が望まれています。 |