^ abAjtai, Miklos (1996). “Generating Hard Instances of Lattice Problems”. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. pp. 99?108. doi:10.1145/237814.237838. ISBN978-0-89791-785-8
^Hoffstein, Jeffrey; Pipher, Jill; Silverman, Joseph H. (1998). “NTRU: A ring-based public key cryptosystem”. Algorithmic Number Theory. Lecture Notes in Computer Science. 1423. pp. 267?288. doi:10.1007/bfb0054868. ISBN978-3-540-64657-0
^ abRegev, Oded (2005-01-01). “On lattices, learning with errors, random linear codes, and cryptography”. Proceedings of the thirty-seventh annual ACM symposium on Theory of computing - STOC '05. ACM. pp. 84?93. doi:10.1145/1060590.1060603. ISBN978-1581139600
^ abPeikert, Chris (2009-01-01). “Public-key cryptosystems from the worst-case shortest vector problem”. Proceedings of the 41st annual ACM symposium on Symposium on theory of computing - STOC '09. ACM. pp. 333?342. doi:10.1145/1536414.1536461. ISBN9781605585062
^Brakerski, Zvika; Langlois, Adeline; Peikert, Chris; Regev, Oded; Stehle, Damien (2013-01-01). “Classical hardness of learning with errors”. Proceedings of the 45th annual ACM symposium on Symposium on theory of computing - STOC '13. ACM. pp. 575?584. arXiv:1306.0281. doi:10.1145/2488608.2488680. ISBN9781450320290
^ abLyubashevsky, Vadim; Peikert, Chris; Regev, Oded (2010-05-30) (英語). On Ideal Lattices and Learning with Errors over Rings. Lecture Notes in Computer Science. 6110. 1?23. doi:10.1007/978-3-642-13190-5_1. ISBN978-3-642-13189-9
Oded Goldreich, Shafi Goldwasser, and Shai Halevi. "Public-key cryptosystems from lattice reduction problems". In CRYPTO ’97: Proceedings of the 17th Annual International Cryptology Conference on Advances in Cryptology, pages 112-131, London, UK, 1997. Springer-Verlag.
Phong Q. Nguyen. "Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from crypto ’97". In CRYPTO ’99: Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, pages 288-304, London, UK, 1999. Springer-Verlag.
Oded Regev. Lattice-based cryptography. In Advances in cryptology (CRYPTO), pages 131-141, 2006.