^Singh, Kalendra B. (1997). “Sinkhole subsidence due to mining”. Geotechnical & Geological Engineering15 (4): 327–341. doi:10.1007/BF00880712.
^Singh, Kalendra B.; Dhar, Bharat B. (December 1997). “Sinkhole subsidence due to mining”. Geotechnical and Geological Engineering15 (4): 327–341. doi:10.1007/BF00880712.
^Huang, Xiang; Sillanpää, Mika; Gjessing, Egil T.; Peräniemi, Sirpa; Vogt, Rolf D. (2010-09-01). “Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley”. The Science of the Total Environment408 (19): 4177–4184. Bibcode: 2010ScTEn.408.4177H. doi:10.1016/j.scitotenv.2010.05.015. ISSN1879-1026. PMID20542540.
^ abJung, Myung Chae; Thornton, Iain (1996). “Heavy metals contamination of soils and plants in the vicinity of a lead-zinc mine, Korea”. Applied Geochemistry11 (1–2): 53–59. Bibcode: 1996ApGC...11...53J. doi:10.1016/0883-2927(95)00075-5.
^Diehl, E; Sanhudo, C. E. D; DIEHL-FLEIG, Ed (2004). “Ground-dwelling ant fauna of sites with high levels of copper”. Brazilian Journal of Biology61 (1): 33–39. doi:10.1590/S1519-69842004000100005. PMID15195362.
^Tarras-Wahlberga, N.H.; Flachier, A.; Lanec, S.N.; Sangforsd, O. (2001). “Environmental impacts and metal exposure of aquatic ecosystems in rivers contaminated by small scale gold mining: the Puyango River basin, southern Ecuador”. The Science of the Total Environment278 (1–3): 239–261. Bibcode: 2001ScTEn.278..239T. doi:10.1016/s0048-9697(01)00655-6. PMID11669272.
^Cervantes-Ramírez, Laura T.; Ramírez-López, Mónica; Mussali-Galante, Patricia; Ortiz-Hernández, Ma. Laura; Sánchez-Salinas, Enrique; Tovar-Sánchez, Efraín (2018-05-18). “Heavy metal biomagnification and genotoxic damage in two trophic levels exposed to mine tailings: a network theory approach”. Revista Chilena de Historia Natural91 (1): 6. doi:10.1186/s40693-018-0076-7. ISSN0717-6317.
^Pyatt, F. B.; Gilmore, G.; Grattan, J. P.; Hunt, C. O.; McLaren, S. (2000). “An Imperial Legacy? An Exploration of the Environmental Impact of Ancient Metal Mining and Smelting in Southern Jordan”. Journal of Archaeological Science27 (9): 771–778. doi:10.1006/jasc.1999.0580.
^Mummey, Daniel L.; Stahl, Peter D.; Buyer, Jeffrey S. (2002). “Soil microbiological properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites”. Soil Biology and Biochemistry34 (11): 1717–1725. doi:10.1016/s0038-0717(02)00158-x.
^Franks, DM, Boger, DV, Cote, CM, Mulligan (2011). “Sustainable Development Principles for the Disposal of Mining and Mineral Processing Wastes”. Resources Policy36 (2): 114–122. doi:10.1016/j.resourpol.2010.12.001.
^“7 Colliery Spoil Heap Combustion”. The Reclamation of Former Coal Mines and Steelworks. Studies in Environmental Science. 56. (1993). pp. 213–232. doi:10.1016/S0166-1116(08)70744-1. ISBN9780444817037
^ abPrasad, Siva, T Byragi Reddy, and Ramesh Vadde. 2015. “Environmental Aspects and Impacts Its Mitigation Measures of Corporate Coal Mining” 11: 2–7. https://doi.org/10.1016/j.proeps.2015.06.002.
^Prasad, Siva, T Byragi Reddy, and Ramesh Vadde. 2015. “Environmental Aspects and Impacts Its Mitigation Measures of Corporate Coal Mining” 11: 2–7. https://doi.org/10.1016/j.proeps.2015.06.002.