離散信号(英: Discrete signal)もしくは離散時間信号(英: Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。
離散信号が均一に間隔を置かれた回に対応する系列である場合、それは関連する標本化周波数を持っている、標本化周波数はデータ系列ではわからないので、別のデータ項目として関連付けられるかもしれない。
離散時間信号であることを強調する場合、整数 を用いて次のように表記される[1]。
が周期関数であるすなわち が成立するとき、1サンプルあたりの位相変化量 を正規化角周波数という。「正規化」は連続時間信号との対比を強調したものであり、1サンプル = 標本化周期 秒の関係から(非正規化)角周波数 との間に
の関係が成立する。
連続時間における周期信号が離散時間でも周期性をもつとは限らない。
例えば連続時間信号 を標本化した離散時間信号 を考える。 となる は整数かつ を満たす必要があるが、これは しか存在しない。ゆえに を満たす が存在しない、つまり は連続時間で周期性を持っていても標本化された離散時間では周期性を持たない。
デジタル信号は、離散的な振幅のみを有する離散時間信号、すなわち、離散時間離散振幅信号。それは量子化された離散信号から得る。