この記事は英語から大ざっぱに翻訳されたものであり、場合によっては不慣れな翻訳者や機械翻訳によって翻訳されたものかもしれません。 |
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。(2020年4月) |
位相幾何学において、CW複体(CWふくたい)とは、ホモトピー理論の要請を満たすためにJ. H. C. Whiteheadによって導入された位相空間の一種である。この空間は、単体複体よりも広義の概念であり、いくつかの優れた圏論的特性を備える一方、特に非常に小さい複体における計算で役立つ連結性を有する。
CW複体は胞体 (cell)と呼ばれる基本要素で構成され、より厳密には、胞体がどのようにトポロジー的に張り合わせられるかを規定する。CW複体のCは「閉包有限性」(closure finite)[1]を表し、Wは「弱い位相」(weak topology)を表す。
次元の閉胞体とは、 次元ユークリッド空間上の閉球体 に同相な空間を指す。一例として、 次元空間における単体 (三次元空間なら四面体)は閉胞体であり、より一般的に言えば、凸超多面体が閉胞体に対応する。一方で、 次元の開胞体は、 の内部に同相な空間を指す。なお、0次元の開(および閉)胞体は、一点空間と定める。
CW複体は、ハウスドルフ空間 と、次の2つの性質を満たす開胞体への分割 を指す。
とあるn次元の閉球体からCW複体全体への連続写像について、その写像の値域をXの分割に含まれる各開胞体Cの閉包に限定すると、その写像fが同型写像となる場合、このCW複体を正則であるという。
CW複体の定義ではXの分割に現れるXの部分集合は全て胞体でなければならず、すなわち、各部分集合はとあるn次元空間上の開球体と同相でなければならなかった。これに対して、相対CW複体では、Xの分割に現れる部分集合のうち1つだけは胞体の性質を保つ必要がなく、この胞体の性質を持たない部分集合を特に-1次元の胞体として取り扱う。[1][2][3][4]