Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus(1965)(多変数の解析学―古典理論への現代的アプローチ)は、Michael Spivakによる学部上級生向けの多変数微積分、微分形式、多様体上の積分に関する教科書。簡潔で厳密な現代的な性格を持つことで知られる。
本書は、Calculus on Manifoldsは、実多変数ベクトル値関数(f : Rn→Rm)及びユークリッド空間に埋め込まれた微分可能な多様体の理論についての簡潔なモノグラフである。微分(逆関数定理、陰関数定理を含む)、リーマン積分(フビニの定理を含む)の概念を多変数の関数に拡張するとともに、ベクトル解析の古典的定理を扱っている。コーシー・グリーンの定理、オストログラツキー・ガウスの発散定理、ケルヴィン・ストークスの定理などを、「ユークリッド空間に埋め込まれた可微分多様体上の微分形式」、および、「境界を持つ多様体上の一般化ストークスの定理」の系として説明している。本書は、いくつかの古典的な結果の、より一般的で抽象的な現代的一般化と、その証明を与えている[注釈 1]。
Stokes' Theorem for Manifolds-With-Boundary. ― Ifis a compact oriented-dimensional manifold-with-boundary,is the boundary given the induced orientation, andis a ()-form on, then.
学部レベルでこれらのトピックもカバーしている最近の教科書として、James MunkresによるAnalysis on Manifolds(366pp)は知られている[7]。James Munkreの本は、本書の2倍以上の長さでゆったりとしたペースで、同じ主題をより注意深く詳細に扱っている。それにもかかわらず、Munkresは、 Analysis on Manifoldsの序文にあるSpivakのこのテキストの影響を認めている[8]。
Spivakによる、別の5巻の及ぶ教科書A Comprehensive Introduction to Differential Geometryの序文には、本書、Calculus on Manifoldsがこのテキストに基づくコースの前提条件として機能すると記載されている。実際、Calculus on Manifoldsで紹介された概念のいくつかは、より洗練された設定でこの古典的な著書の第1巻に再現されている[9]。
^The formalisms of differential forms and the exterior calculus used in Calculus on Manifolds were first formulated by Élie Cartan. Using this language, Cartan stated the generalized Stokes' theorem in its modern form, publishing the simple, elegant formula shown here in 1945. For a detailed discussion of how Stokes' theorem developed historically. See Katz (1979, pp. 146–156).
Auslander, Louis (1967), “Review of Calculus on manifolds—a modern approach to classical theorems of advanced calculus”, Quarterly of Applied Mathematics24 (4): 388–389
Botts, Truman (1966), “Reviewed Work: Calculus on Manifolds by Michael Spivak”, Science153 (3732): 164–165, doi:10.1126/science.153.3732.164-a
Hubbard, John H.; Hubbard, Barbara Burke (2009), Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach (4th ed.), Upper Saddle River, N.J.: Prentice Hall (4th edition by Matrix Editions (Ithaca, N.Y.)), ISBN978-0-9715766-5-0 [An elementary approach to differential forms with an emphasis on concrete examples and computations]
Munkres, James (1991), Analysis on Manifolds, Redwood City, Calif.: Addison-Wesley (reprinted by Westview Press (Boulder, Colo.)), ISBN978-0-201-31596-7 [An undergraduate treatment of multivariable and vector calculus with coverage similar to Calculus on Manifolds, with mathematical ideas and proofs presented in greater detail]
Tu, Loring W. (2011), An Introduction to Manifolds (2nd ed.), New York: Springer, ISBN978-1-4419-7399-3 [A standard treatment of the theory of smooth manifolds at the 1st year graduate level]