これら2つのドメインがきわめて近接して存在していることや、いくつかの実験的データからは、これらは直接的な物理的相互作用を行うことでキナーゼドメインの活性を負に調節する単一のユニットとして機能することが示唆されている[24]。歴史的に、この自己阻害ブロックはCR1(Conserved Region 1)と呼ばれており、ヒンジ領域はCR2、キナーゼドメインはCR3と呼ばれていた。自己阻害状態のキナーゼの正確な構造はまだ明らかではない。
自己阻害ブロックとキナーゼドメインの間には、すべてのRafタンパク質に特有の長いフラグメントが存在する。このフラグメントはセリンに富むものの、関連するRafの間での配列の保存性は低い。この領域は構造を持たず、非常に柔軟性が高いようである。この領域の役割として最も可能性が高いのは、堅く折りたたまれた自己阻害ドメインと触媒ドメインとの間の「ヒンジ」としての機能であり、分子内の複雑な動きや大きなコンフォメーション変化を可能にしていると考えられている[25]。このヒンジ領域には、14-3-3タンパク質の認識を担う、小さな保存された領域(short linear motif)が含まれるが、認識が行われるのは重要なセリン残基(ヒトのc-Rafではセリン259番残基(Ser259))がリン酸化されているときのみである。同様のモチーフはすべてのRafのC末端付近(キナーゼドメインよりも下流、リン酸化されるSer621を中心とする領域)にも存在する。
c-RafのC末端側の半分は単一のドメインへと折りたたまれ、触媒活性を担う。このキナーゼドメインの構造は、c-Raf[26]とB-Raf[27]の双方で詳細に解明されている。このドメインは他のRafキナーゼやKSR(kinase suppressor of Ras)タンパク質ときわめて類似しており、MLK(mixed lineage kinase)ファミリーなど、他のMAP3Kの一部とも明らかに類似している。これらはプロテインキナーゼのTKL(tyrosine kinase like)グループを構成する。これらの触媒ドメインの特徴の一部はチロシンキナーゼとも共通であるが、TKLグループのキナーゼの活性は標的タンパク質のセリンとスレオニン残基のリン酸化に限定されている。Rafキナーゼの最も重要な基質は(自身を除くと)MEK1とMEK2(英語版)キナーゼであり、これらキナーゼの活性はRafによるリン酸化に厳密に依存している。
^“An alternatively spliced c-mil/raf mRNA is predominantly expressed in chicken muscular tissues and conserved among vertebrate species”. Oncogene6 (8): 1307–11. (August 1991). PMID1886707.
^ ab“The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue”. Nature375 (6532): 554–60. (June 1995). Bibcode: 1995Natur.375..554N. doi:10.1038/375554a0. PMID7791872.
^“Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface”. Biochemistry34 (21): 6911–8. (May 1995). doi:10.1021/bi00021a001. PMID7766599.
^“Regulation of RAF activity by 14-3-3 proteins: RAF kinases associate functionally with both homo- and heterodimeric forms of 14-3-3 proteins”. J. Biol. Chem.284 (5): 3183–94. (January 2009). doi:10.1074/jbc.M804795200. PMID19049963.
^“A phosphatase holoenzyme comprised of Shoc2/Sur8 and the catalytic subunit of PP1 functions as an M-Ras effector to modulate Raf activity”. Mol. Cell22 (2): 217–30. (April 2006). doi:10.1016/j.molcel.2006.03.027. PMID16630891.
^“Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions”. Oncogene20 (30): 3949–58. (July 2001). doi:10.1038/sj.onc.1204526. PMID11494123.
^“Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer”. J. Mol. Biol.423 (4): 486–95. (November 2012). doi:10.1016/j.jmb.2012.08.009. PMID22922483.
^“Regulation of Raf through phosphorylation and N terminus-C terminus interaction”. J. Biol. Chem.278 (38): 36269–76. (September 2003). doi:10.1074/jbc.M212803200. PMID12865432.
^“Phosphorylation of the myosin-binding subunit of myosin phosphatase by Raf-1 and inhibition of phosphatase activity”. J. Biol. Chem.277 (4): 3053–9. (January 2002). doi:10.1074/jbc.M106343200. PMID11719507.
^“Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia”. Cancer Res.66 (7): 3401–8. (April 2006). doi:10.1158/0008-5472.CAN-05-0115. PMID16585161.
^“Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF”. Cancer Res.65 (21): 9719–26. (November 2005). doi:10.1158/0008-5472.CAN-05-1683. PMID16266992.
^“Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases”. Acta Neuropathol.123 (2): 223–33. (2012). doi:10.1007/s00401-011-0887-y. PMID22012135.
^“Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody”. Acta Neuropathol.122 (1): 11–9. (2011). doi:10.1007/s00401-011-0841-z. PMID21638088.
^“B-Raf and Raf-1 are regulated by distinct autoregulatory mechanisms”. J. Biol. Chem.280 (16): 16244–53. (April 2005). doi:10.1074/jbc.M501185200. PMID15710605.
^“Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization”. Mol. Cell20 (6): 963–9. (December 2005). doi:10.1016/j.molcel.2005.10.022. PMID16364920.
^“Raf1 interaction with Cdc25 phosphatase ties mitogenic signal transduction to cell cycle activation”. Genes Dev.9 (9): 1046–58. (May 1995). doi:10.1101/gad.9.9.1046. PMID7744247.
^“Activation of CDC 25 phosphatase and CDC 2 kinase involved in GL331-induced apoptosis”. Cancer Res.57 (14): 2974–8. (July 1997). PMID9230211.
^“The caspase-8 inhibitor FLIP promotes activation of NF-kappaB and Erk signaling pathways”. Curr. Biol.10 (11): 640–8. (June 2000). doi:10.1016/s0960-9822(00)00512-1. PMID10837247.
^ ab“Raf-1 interacts with Fyn and Src in a non-phosphotyrosine-dependent manner”. J. Biol. Chem.269 (26): 17749–55. (July 1994). PMID7517401.
^“Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool”. J. Biol. Chem.274 (50): 35719–24. (December 1999). doi:10.1074/jbc.274.50.35719. PMID10585452.
^“Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases”. J. Biol. Chem.273 (17): 10475–84. (April 1998). doi:10.1074/jbc.273.17.10475. PMID9553107.
^“SIAH-1 interacts with CtIP and promotes its degradation by the proteasome pathway”. Oncogene22 (55): 8845–51. (December 2003). doi:10.1038/sj.onc.1206994. PMID14654780.
^“Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization”. J. Biol. Chem.279 (21): 22353–61. (May 2004). doi:10.1074/jbc.M312867200. PMID15031288.
^“The small GTP-binding protein, Rhes, regulates signal transduction from G protein-coupled receptors”. Oncogene23 (2): 559–68. (January 2004). doi:10.1038/sj.onc.1207161. PMID14724584.
^ ab“Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis”. Genomics81 (2): 112–25. (February 2003). doi:10.1016/s0888-7543(02)00008-3. PMID12620389.
^ ab“Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1”. J. Biol. Chem.275 (38): 29788–93. (September 2000). doi:10.1074/jbc.M001378200. PMID10882715.
^“Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras”. J. Biol. Chem.270 (51): 30274–7. (December 1995). doi:10.1074/jbc.270.51.30274. PMID8530446.
^“Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras”. Cell89 (3): 457–67. (May 1997). doi:10.1016/s0092-8674(00)80226-3. PMID9150145.
^ ab“X-linked and cellular IAPs modulate the stability of C-RAF kinase and cell motility”. Nat. Cell Biol.10 (12): 1447–55. (December 2008). doi:10.1038/ncb1804. PMID19011619.
^“Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system”. J. Biol. Chem.268 (29): 21711–6. (October 1993). PMID8408024.
^“Contribution of the ERK5/MEK5 pathway to Ras/Raf signaling and growth control”. J. Biol. Chem.274 (44): 31588–92. (October 1999). doi:10.1074/jbc.274.44.31588. PMID10531364.
^“A scaffold protein in the c-Jun NH2-terminal kinase signaling pathways suppresses the extracellular signal-regulated kinase signaling pathways”. J. Biol. Chem.275 (51): 39815–8. (December 2000). doi:10.1074/jbc.C000403200. PMID11044439.
^“Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1”. J. Biol. Chem.277 (6): 4395–405. (February 2002). doi:10.1074/jbc.M110000200. PMID11733498.
^“Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation”. J. Biol. Chem.274 (1): 48–51. (January 1999). doi:10.1074/jbc.274.1.48. PMID9867809.
^“Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent”. J. Biol. Chem.279 (29): 29930–7. (July 2004). doi:10.1074/jbc.M402591200. PMID15150271.
^“Signal transduction elements of TC21, an oncogenic member of the R-Ras subfamily of GTP-binding proteins”. Oncogene18 (43): 5860–9. (October 1999). doi:10.1038/sj.onc.1202968. PMID10557073.
^ abc“14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules”. J. Biol. Chem.271 (33): 20029–34. (August 1996). doi:10.1074/jbc.271.33.20029. PMID8702721.
^“14-3-3Gamma interacts with and is phosphorylated by multiple protein kinase C isoforms in PDGF-stimulated human vascular smooth muscle cells”. DNA Cell Biol.18 (7): 555–64. (July 1999). doi:10.1089/104454999315105. PMID10433554.
^“Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein”. Biochemistry41 (17): 5566–72. (April 2002). doi:10.1021/bi015946f. PMID11969417.
^“Activation-modulated association of 14-3-3 proteins with Cbl in T cells”. J. Biol. Chem.271 (24): 14591–5. (June 1996). doi:10.1074/jbc.271.24.14591. PMID8663231.
^“14-3-3 zeta negatively regulates raf-1 activity by interactions with the Raf-1 cysteine-rich domain”. J. Biol. Chem.272 (34): 20990–3. (August 1997). doi:10.1074/jbc.272.34.20990. PMID9261098.
^“Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo”. J. Biol. Chem.275 (38): 29772–8. (September 2000). doi:10.1074/jbc.M001207200. PMID10887173.
^“Characterization of the interaction of Raf-1 with ras p21 or 14-3-3 protein in intact cells”. FEBS Lett.368 (2): 321–5. (July 1995). doi:10.1016/0014-5793(95)00686-4. PMID7628630.
“HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication”. J. Biosci.28 (3): 323–35. (2004). doi:10.1007/BF02970151. PMID12734410.
“Medullary thyroid cancer: the functions of raf-1 and human achaete-scute homologue-1”. Thyroid15 (6): 511–21. (2006). doi:10.1089/thy.2005.15.511. PMID16029117.