最近の研究によれば、コヒーシンやその制御因子をコードする遺伝子の変異がヒトの遺伝疾患を引き起こすことが明らかになりつつある。これまでに、コーネリア・デ・ランゲ症候群(Cornelia de Lange syndrome)とロバーツ症候群(Roberts syndrome)の2例が報告されている。コーネリア・デ・ランゲ症候群の原因タンパク質として、初めて同定されたのはコヒーシンをクロマチンに結合させるNIPBLである[30][31]。その後、コヒーシン・サブユニットの変異[32]やコヒーシンの再利用を促進する脱アセチル化酵素HDAC8の変異[33]がコーネリア・デ・ランゲ症候群を引き起こすことが報告された。ロバーツ症候群の原因タンパク質としては、コヒーシンのアセチル化酵素ESCO2が同定されている[34]。コヒーシンの制御異常によって引き起こされるこれらの疾患は、コヒーシン病(cohesinopathy)と総称される。
^Nasmyth K, Haering CH (2009). “Cohesin: its roles and mechanisms”. Annu. Rev. Genet.43: 525-558. PMID19886810.
^Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE (2008). “Sister chromatid cohesion: a simple concept with a complex reality”. Annu. Rev. Cell Dev. Biol.24: 105-129. PMID18616427.
^Jeppsson K, Kanno T, Shirahige K, Sjögren C (2014). “The maintenance of chromosome structure: positioning and functioning of SMC complexes”. Nat. Rev. Mol. Cell Biol.15: 601-614. PMID25145851.
^Uhlmann F (2016). “SMC complexes: from DNA to chromosomes”. Nat. Rev. Mol. Cell Biol.17: 399-412. PMID27075410.
^Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003). “Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners”. Mol. Cell11 (3): 571-575. PMID12667442.
^Neuwald AF, Hirano T (2000). “HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions”. Genome Res.10 (10): 1445-52. PMID11042144.
^Yoshimura SH, Hirano T (2016). “HEAT repeats - versatile arrays of amphiphilic helices working in crowded environments?”. J. Cell Sci.129 (21): 3963-3970. PMID27802131.
^Michaelis C, Ciosk R, Nasmyth K (1997). “Cohesins: chromosomal proteins that prevent premature separation of sister chromatids”. Cell91 (1): 35-45. PMID9335333.
^Guacci V, Koshland D, Strunnikov A (1997). “A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae”. Cell91 (1): 47-57. PMID9335334.
^ abcTóth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K (1999). “Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication”. Genes Dev13 (3): 320-333. PMID9990856.
^Losada A, Hirano M, Hirano T (1998). “Identification of Xenopus SMC protein complexes required for sister chromatid cohesion”. Genes Dev.12 (13): 1986-1997. PMID9649503.
^Losada A, Yokochi T, Kobayashi R, Hirano T (2000). “Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes”. J. Cell Biol.150 (3): 405-416. PMID10931856.
^Watanabe Y, Nurse P (1999). “Cohesin Rec8 is required for reductional chromosome segregation at meiosis”. Nature400: 461-464. PMID10440376.
^Revenkova E, Eijpe M, Heyting C, Gross B, Jessberger R (2001). “Novel meiosis-specific isoform of mammalian SMC1”. Mol. Cell. Biol.21: 6984-6998. PMID11564881.
^Prieto I, Suja JA, Pezzi N, Kremer L, Martínez-A C, Rufas JS, Barbero JL (2001). “Mammalian STAG3 is a cohesin specific to sister chromatid arms in meiosis I”. Nat. Cell Biol.3: 761-766. PMID11483963.
^Lee J, Hirano T (2011). “RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis”. J. Cell Biol.193: 263-276. PMID21242291.
^Anderson DE, Losada A, Erickson HP, Hirano T (2002). “Condensin and cohesin display different arm conformations with characteristic hinge angles”. J. Cell Biol.156 (6): 419-424. PMID11815634.
^Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J. (2004). “Structure and stability of cohesin's Smc1-kleisin interaction.”. Mol. Cell15 (6): 951-964. PMID15383284.
^Gligoris TG, Scheinost JC, Bürmann F, Petela N, Chan KL, Uluocak P, Beckouët F, Gruber S, Nasmyth K, Löwe J. (2014). “Closing the cohesin ring: structure and function of its Smc3-kleisin interface”. Science346 (6212): 963-967. PMID25414305.
^Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, Tomchick DR, Yu H (2014). “Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion”. Nat. Struct. Mol. Biol.21 (10): 864-870. PMID25173175.
^Skibbens RV, Corson LB, Koshland D, Hieter P (1999). “Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery”. Genes Dev13 (3): 307-319. PMID9990855.
^Gandhi R, Gillespie PJ, Hirano T (2006). “Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase”. Curr. Biol.16 (24): 2406-2417. PMID17112726.
^Kueng S, Hegemann B, Peters BH, Lipp JJ, Schleiffer A, Mechtler K, Peters JM (2006). “Wapl controls the dynamic association of cohesin with chromatin”. Cell127 (5): 955-967. PMID17113138.
^Hartman T, Stead K, Koshland D, Guacci V (2000). “Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae”. J. Cell Biol.151 (3): 613-626. PMID11062262.
^Kerrebrock AW, Moore DP, Wu JS, Orr-Weaver TL (1995). “Mei-S332, a Drosophila protein required for sister-chromatid cohesion, can localize to meiotic centromere regions”. Cell83 (2): 247-256. PMID7585942.
^Kitajima TS, Kawashima SA, Watanabe Y (2004). “The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis”. Nature427 (6974): 510-517. PMID14730319.
^ abUhlmann F, Lottspeich F, Nasmyth K (1999). “Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1”. Nature400 (6739): 37-42. PMID10403247.
^Funabiki H, Yamano H, Kumada K, Nagao K, Hunt T, Yanagida M (1996). “Cut2 proteolysis required for sister-chromatid seperation in fission yeast”. Nature381 (6581): 438-441. PMID8632802.
^Dorsett D, Merkenschlager M (2013). “Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans”. Curr Opin Cell Biol25 (3): 327-333. PMID23465542.
^Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG (2004). “Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B”. Nat Genet.36 (6): 631-635. PMID15146186.
^Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ, Strachan T (2004). “NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome”. Nat Genet.36 (6): 636-641. PMID15146185.
^Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J, Gil-Rodríguez C, Arnedo M, Loeys B, Kline AD, Wilson M, Lillquist K, Siu V, Ramos FJ, Musio A, Jackson LS, Dorsett D, Krantz ID (2007). “Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation”. Am. J. Hum. Genet.80 (3): 485-494. PMID17273969.
^Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, Suzuki Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Hirota T, Krantz ID, Shirahige K (2012). “HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle”. Nature489 (7415): 313-317. PMID22885700.
^Vega H, Waisfisz Q, Gordillo M, Sakai N, Yanagihara I, Yamada M, van Gosliga D, Kayserili H, Xu C, Ozono K, Jabs EW, Inui K, Joenje H (2005). “Roberts syndrome is caused by mutations in ESCO2, a human homolog of yeast ECO1 that is essential for the establishment of sister chromatid cohesion”. Nat Genet.37 (5): 468-470. PMID15821733.