トラベクテジン
IUPAC命名法 による物質名
(1'R ,6R ,6aR ,7R ,13S ,14S ,16R )-6',8,14-trihydroxy- 7',9-dimethoxy-4,10,23-trimethyl-19-oxo-3',4',6,7, 12,13,14,16-octahydrospiro[6,16-(epithiopropano oxymethano)-7,13-imino-6aH -1,3-dioxolo[7,8]isoquino [3,2-b ][3]benzazocine-20,1'(2'H )-isoquinolin]-5-yl acetate
臨床データ ライセンス
EMA :リンク 法的規制
薬物動態 データ生物学的利用能 不適用(静脈注射のみ) 血漿タンパク結合 94 〜 98% 代謝 肝臓 (主にCYP3A4 による代謝)半減期 180時間(平均) 排泄 主に糞便 データベースID CAS番号
114899-77-3 ATCコード
L01CX01 (WHO ) PubChem
CID: 108150 ChemSpider
16736970 KEGG
D06199 化学的データ 化学式 C 39 H 43 N 3 O 11 S 分子量 761.84 g/mol テンプレートを表示
トラベクテジン (trabectedin)は抗腫瘍薬 の一つ。Ecteinascidin 743 (エクテイナシジン743)あるいはET-743 としても知られている。商品名はヨンデリス 。悪性軟部腫瘍 の治療薬として日本[ 1] 、アメリカ、ヨーロッパ 、ロシア などで承認されている。また、乳癌 、前立腺癌 、小児肉腫に対する治験 が行われている。トラベクテジンは欧州委員会 とアメリカ食品医薬品局 から軟部肉腫および卵巣癌 に対する希少疾病用医薬品 として[ 2] 認められている。また日本でも「染色体転座を伴う悪性軟部腫瘍」の希少疾病用医薬品として認められている[ 3] 。
2009年11月、欧州委員会は、27のEU 加盟国およびノルウェー 、アイスランド 、リヒテンシュタイン における、白金系抗がん剤 感受性の再発性卵巣癌の女性に対するトラベクテジンとペグ化リポソームドキソルビシン との併用治療を認可した[ 4] 。
悪性軟部腫瘍[ 5]
化学療法未治療例における有効性および安全性は確立していない。
他の抗悪性腫瘍剤との併用について、有効性および安全性は確立していない。
重大な副作用として添付文書に記載されているものは、
肝不全、肝機能障害(AST(GOT)上昇(58.9%)、ALT(GPT)上昇(71.2%)等)、
好中球減少(87.7%)、白血球減少(64.4%)、血小板減少(38.4%)、貧血(32.9%)、リンパ球減少(27.4%)、発熱性好中球減少症(15.1%)、感染症(肺炎(1.4%)、敗血症性ショック等)、
横紋筋融解症(1.4%)、重篤な過敏症、鬱血性心不全(1.4%)、左室駆出率低下
である[ 5] 。(頻度未記載は頻度不明)
1950年代から1960年代の間、アメリカ国立癌研究所 (NCI) は植物 と海洋生物 素材からの幅広い物質探索(スクリーニング)を行っていた。そのスクリーニングの結果、ホヤ の一種であるEcteinascidia turbinata の抽出物が抗癌活性を示すことが1969年に明らかとなった[ 6] [ 7] 。
活性分子の精製と同定は、十分に繊細な技術が開発されるまで長い年月を要したが、1984年にイリノイ大学 のK. L. Rinehartによって活性成分の一つであるエクテイナシジン743の構造が決定された[ 8] 。Rinehartは、西インド諸島 の礁でスクーバダイビングによって、ホヤを収集した[ 9] 。スペイン の会社PharmaMarがイリノイ大学から、この化合物のライセンスを取得し、トラベクテジンを含むホヤの養殖を試みたが大した成果はなかった[ 9] 。ホヤからのトラベクテジンの単離収率は極めて低く、1グラムのトラベクテジンを単離するのに1トンのホヤが必要となる(臨床試験には約5グラムの化合物が必要と考えられた)[ 10] 。そこで、Rinehartはハーバード大学 の化学者 E. J. コーリー に、トラベクテジンの合成法の開発を依頼した。コーリーの研究グループは1996年に、トラベクテジンの全合成 を発表した[ 11] 。その後、より単純で扱いやすい合成法が開発され、ハーバード大学が特許を取得し、PharmaMarにライセンス供与した[ 9] 。現在、トラベクテジンは、PharmaMarによって開発された、微生物 Pseudomonas fluorescens の培養によって得られる抗生物質 であるサフラシンB (safracin B) を出発原料とした半合成 法を基に供給されている[ 12] 。
トラベクテジンは1996年に初めてヒトに投与された[要出典 ] 。2007年に、欧州医薬品庁 (EMEA ) は、アントラサイクリン 系抗がん剤およびイホスファミド による治療が失敗したかこれらの薬剤に適さない進行性軟部肉腫の患者に対する治療薬として、トラベクテジン(商品名 Yondelis)の販売を承認した。EMEA医薬品委員会 (CHMP ) は、トラベクテジンは充分にデザインされた現在の最良の治療との比較ランダム化試験によって評価されておらず、臨床的有効性のデータは主に脂肪肉腫 と平滑筋肉腫 患者に対するものであると意見を述べた。しかしながら、軸となる研究では、2つの異なるトラベクチン投与計画群で有意差 が見られており、病気の希少性を鑑みて、CHMPは例外的に医薬品承認を認めることができるとした[ 13] 。承認の一部として、PharmaMarは特定の染色体転座がトラベクテジンに対する反応性を予測するのに使えるかどうかについて明らかにするためのさらなる臨床試験を行うことに合意した。2008年にEMEAおよびFDAに対して再発卵巣癌 へのペグ化リポソームドキソルビシン との併用療法についての販売承認申請資料が提出されたが、2011年にはFDAから第III相臨床試験の追加を要求されたため米国での申請を取り下げた[ 14] 。
また、前立腺癌、乳癌、小児腫瘍に対する第II相臨床試験が行われている[ 15] 。
トラベクテジンは3つのテトラヒドロイソキノリン 部と、システイン 残基を含むヘテロ10員環を含む8つの環、7つの不斉中心を有している。
トラベクテジン(ET-743)の推定生合成経路
2011年にホヤEcteinascidia turbinata の共生微生物であるCandidatus Endoecteinascidia frumentensisがエクテイナシジン743の生合成で大きな役割を果すことが明らかになった[ 16] 。Candidatus Endoecteinascidia frumentensisでの生合成は、EtuA3モジュールのアシルリガーゼ ドメイン に脂肪酸が結合する事から始まる。システインとグリシンが標準的な非リボソームペプチド(NRPs)アミノ酸として脂肪酸に結合する[1]。次にチロシンが酵素EtuH、EtuM1、EtuM2で酸化されてメタ位が水酸化された後、パラ位の水酸基とメタ位の(水酸化されていない)炭素がメチル化される。このチロシン誘導体がピクテ・スペングラー反応 で[1]の分子に結合する。この時アミノ基がアルデヒドと結合してイミンとなり、フェノール環から電子を受けて縮合環化して二級アミンとなる。この反応はEtuA2のTドメインで進む。チロシン誘導体はもう1分子が消費され、ピクテ・スペングラー反応で2つ目のニ環系構造が得られる。酵素EtuOおよびEtuF3がその後の反応に関与して、いくつかの官能基とスルフィド結合が導入され、その結果、ET-583、ET-597、ET-596、ET-594が合成される[ 17] 。第3の(m- メチル化されていない)m- O-メチル化チロシンがピクテ・スペングラー反応で環化されて最終生成物が得られる[ 18] 。
トラベクテジンの生合成には2つのチロシン 残基の二量体 化による分子の五環性コア構造の形成が関与していると考えられていたので、イライアス・コーリー によるトラベクテジンの全合成 はこの生合成経路に基づいた合成戦略によって達成されている[ 11] 。この合成は、マンニッヒ反応 、ピクテ・スペングラー反応 、クルチウス転位 、不斉ロジウム -ジホスフィン 触媒によるエナンチオ選択的水素化反応などを用いている。別の合成段階では、五環性骨格の構築のためにウギ反応 を利用している。このような複雑な分子の合成でのワンポット 多成分反応において、この反応を使用することは前例がない。
トラベクテジンは癌性遺伝子転写因子FUS -CHOP をブロックして粘液性脂肪肉腫の転写プログラムを逆転させることが明らかにされた。この逆転により、トラベクテジンはこれらの細胞の分化を促して癌遺伝子の発現を阻止している。
遺伝子の転写干渉を除いて、トラベクテジンの作用機序は複雑で完全には解明されていない。DNAに結合しグアニンのN2位をアルキル化する化合物が知られている。この結合は二重螺旋の副溝で、3〜5塩基の間で起こり、特にCGGの配列で多いことがin vitro の研究で判明している。その他に反応が起き易い配列はTGG、AGC、GGCである。一旦結合するとこの可逆的共有結合付加物は、主溝に向かってDNAを曲げ、活性化している転写に干渉し、転写共役ヌクレオチド除去修復複合体を損傷し、RNAポリメラーゼII の分解を促進し、DNA二重らせんを崩壊させる[ 19] 。
また、DNA 骨格の切断と細胞のアポトーシス を引き起こす、DNA鎖近傍での超酸化物 の生成が関与していると考えられている。実際の作用機構は知られていないが、化合物のヒドロキシキノン骨格における普通でない自己酸化還元反応 によって分子状酸素 が超酸化物へと還元されることによって開始されると考えられている。また、化合物が活性型のオキサゾリジン 型に変化しているとの推測もある。
^ “新規抗悪性腫瘍剤「ヨンデリス点滴静注用」 悪性軟部腫瘍の効能・効果で製造販売承認取得 ”. 大鵬薬品工業 (2015年9月28日). 2015年9月30日 閲覧。
^ 欧州医薬品庁 (2009年). “Yondelis trabectedin EPAR summary for the public ”. 2011年3月19日 閲覧。
^ “平成25年度希少疾病用医薬品・希少疾病用医療機器試験研究助成金の交付決定のお知らせ(年度当初申請分) ”. 医薬基盤研究所 (2013年7月11日). 2015年9月30日 閲覧。
^ PharmaMar (2010年5月26日). “About Yondelis ”. 2011年3月19日 閲覧。
^ a b “ヨンデリス点滴静注用0.25mg/ヨンデリス点滴静注用1mg 添付文書 ” (2016年4月). 2016年7月1日 閲覧。
^ Sigel, M. M.; Wellham, L. L.; Lichter, W.; Dudeck, L. E.; Gargus, J.; Lucas, A. H. (1970). Younghen, H. W., Jr., Ed.. ed. Food-Drugs from the Sea Proceedings, 1969 . Washington, DC: Marine Technology Society. pp. 281-295
^ Lichter et al.. Worthen LW. ed. Food-drugs from the sea. Proc: Aug 20–23, 1972. . 173 . Marine Tech Soc. pp. 117–127.
^ Rinehart KL (2000). “Antitumor compounds from tunicates”. Med. Res. Rev. 20 (1): 1–27. doi :10.1002/(SICI)1098-1128(200001)20:1<1::AID-MED1>3.0.CO;2-A . PMID 10608919 .
^ a b c William J. Cromie (2000-05-04). “Potent cancer drugs made -- Sea squirts provide recipe” (英語). The Harvard University Gazette . http://news.harvard.edu/gazette/2000/05.04/cancersquirt.html 2011年3月11日 閲覧。 .
^ Stephanie Pain (1996-09-14). “Hostages of the deep - Prospectors are taking to the seas in search of new and promising chemicals. But the better the drugs turn out to be, the greater the threat to the animals that produce them. Stephanie Pain investigates” . New Scientist (2047). http://www.newscientist.com/article/mg15120473.600-hostages-of-the-deep--prospectors-are-taking-to-the-seas-in-search-of-new-and-promising-chemicalsbut-the-better-the-drugs-turn-out-to-be-the-greater-the-threat-to-the-animalsthat-produce-them-itstephanie-painit-investigates.html .
^ a b E. J. Corey, David Y. Gin, and Robert S. Kania (1996). “Enantioselective Total Synthesis of Ecteinascidin 743”. J. Am. Chem. Soc. 118 (38): 9202–9203. doi :10.1021/ja962480t .
^ Cuevas C, Pérez M, Martín MJ, Chicharro JL, Fernández-Rivas C, Flores M, Francesch A, Gallego P, Zarzuelo M, de La Calle F, García J, Polanco C, Rodríguez I, Manzanares I. (2000). “Synthesis of ecteinascidin ET-743 and phthalascidin Pt-650 from cyanosafracin B”. Org. Lett. 2 (16): 2545–2548. doi :10.1021/ol0062502 . PMID 10956543 .
^ EMEA (2009年). “Yondelis Procedural steps taken and scientific information after the authorisation ”. 2011年3月15日 閲覧。
^ Grogan, Kevin (3 May 2011). “J&J pulls submission for Zeltia's Yondelis” . PharmaTimes Magazine (London, England): Online PharmaTimes. オリジナル の2011年5月7日時点におけるアーカイブ。. https://webcitation.org/5yVqjzpzc?url=http://www.pharmatimes.com/Article/11-05-03/J_J_pulls_submission_for_Zeltia_s_Yondelis.aspx 7 May 2011 閲覧。
^ PharmaMar. “Yondelis ”. 2011年3月15日 閲覧。
^ Rath CM, et al. (November 2011). “Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743” . ACS Chemical Biology 6 (11): 1244–56. doi :10.1021/cb200244t . PMC 3220770 . PMID 21875091 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220770/ .
^ Rath CM, etal (November 2011). “Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743” . ACS Chemical Biology 6 (11): 1244–56. doi :10.1021/cb200244t . PMC 3220770 . PMID 21875091 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220770/ .
^ Rath CM, etal (November 2011). “Meta-omic characterization of the marine invertebrate microbial consortium that produces the chemotherapeutic natural product ET-743” . ACS Chemical Biology 6 (11): 1244–56. doi :10.1021/cb200244t . PMC 3220770 . PMID 21875091 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3220770/ .
^ Grohar, Griffin LB, Yeung C, et al. (2011-02). “Ecteinascidin 743 Interferes with the Activity of EWS-FLI1 in Ewing Sarcoma Cells”. Neoplasia 13 (2): 145-53. PMID 21403840 .