ニコチンが動物の記憶に良い影響を与えることが発見されたのは、1980年代半ばに行われたin vivo の研究によるものであった。これらの研究は、ニコチン性アセチルコリン受容体(nAChR)とその刺激に関する研究に新たな時代をもたらしたが、それまでは主にニコチン中毒に焦点が当てられていた[2][3]。nAChR作動薬の開発は、ニコチンのポジティブな作用が発見された後、1990年代初頭に始まった。前臨床研究では、治療法の可能性を示す研究もあった。ABT-418(英語版)は、合成nAChR作動薬の最初の1つであり[3]、異なる種および性別の成熟したマカクサルにおいて、遅延見本合わせ(英語版)(delayed matching-to-sample;DMTS)の成績を有意に向上させた[4]。またABT-418は、アルツハイマー病、パーキンソン病、注意欠陥多動性障害の治療薬としても検討されており、これらの実験では良好な結果が得られている[3]。
^Henningfield, Jack E; Zeller, Mitch (2006), “Nicotine psychopharmacology research contributions to United States and global tobacco regulation: a look back and a look forward”, Psychopharmacology184 (3–4): 286–291, doi:10.1007/s00213-006-0308-4, PMID16463054
^ abHaroutunian, Vahram; Barnes, Edward; Davis, KL (1985), “Cholinergie modulation of memory in rats”, Psychopharmacology87 (3): 266–271, doi:10.1007/BF00432705, PMID3001803
^Buccafusco, J. J.; Jackson, W. J.; Terry Jr, AV; Marsh, KC; Decker, MW; Arneric, SP (1995), “Improvement in performance of a delayed matching-to-sample task by monkeys following ABT-418: a novel cholinergic channel activator for memory enhancement”, Psychopharmacology120 (3): 256–266, doi:10.1007/BF02311172, PMID8524972
^Ludwig, J.; Höffle-Maas, A. (2010), “Localization by site-directed mutagenesis of a galantamine binding site on α7 nicotinic acetylcholine receptor extracellular domain”, Journal of Receptors and Signal Transduction30 (6): 469–483, doi:10.3109/10799893.2010.505239, PMID21062106
^ abcItier, Valérie; Bertrand, Daniel (2001), “Neuronal nicotinic receptors: from protein structure to function”, FEBS Letters504 (3): 118–125, doi:10.1016/S0014-5793(01)02702-8, PMID11532443
^Mihailescu, Stefan; Drucker-Colín, René (2000), “Nicotine, Brain Nicotinic Receptors, and Neuropsychiatric Disorders”, Archives of Medical Research31 (2): 131–144, doi:10.1016/S0188-4409(99)00087-9, PMID10880717
^Arias, Hugo R. (1997), “Topology of ligand binding sites on the nicotinic acetylcholine receptor”, Brain Research Reviews25 (2): 133–191, doi:10.1016/S0165-0173(97)00020-9, PMID9403137
^ abcdHaydar, Simon N.; Ghiron, Chiara; Bettinetti, Laura; Bothman, Hendrick; Comery, Thomas A.; Dunlop, John; La Rosa, Salvatore; Micco, Iolanda et al. (2009), “SAR and biological evaluation of SEN12333/WAY-317538: Novel alpha 7 nicotinic acetylcholine receptor agonist”, Bioorganic & Medicinal Chemistry17 (14): 5247–5258, doi:10.1016/j.bmc.2009.05.040, PMID19515567
^Brunton, Laurence L.; Lazo, John S.; Parker, Keith L., eds. (2006), Goodman & Gilman's The Pharmacological Basis of Therapeutics (11 ed.), McGRAW HILL, ISBN978-0-07-142280-2
^“The comparative pharmacology and up-regulation of rat neuronal nicotinic receptor subtype binding sites stably expressed in transfected mammalian cells”. The Journal of Pharmacology and Experimental Therapeutics310 (1): 98–107. (July 2004). doi:10.1124/jpet.104.066787. PMID15016836.
^Unwin, Nigel (2004), “Refined Structure of the Nicotinic Acetylcholine Receptor at 4 A° Resolution”, Journal of Molecular Biology346 (4): 967–989, doi:10.1016/j.jmb.2004.12.031, PMID15701510
^Cassels, Bruce K.; Bermúdez, Isabel; Dajas, Federico; Abin-Carriquiry, J. Andrés; Wonnacott, Susan (2005), “From ligand design to therapeutic efficacy: the challenge for nicotinic receptor research”, Drug Discovery Today10 (23–24): 1657–1665, doi:10.1016/S1359-6446(05)03665-2, hdl:10533/176659, PMID16376826
^Tøndera, Janne E.; Olesena, Preben H.; Hansena, John Bondo; Begtrupb, Mikael; Petterssona, Ingrid (2001), “An improved nicotinic pharmacophore and a stereoselective CoMFA-model for nicotinic agonists acting at the central nicotinic acetylcholine receptors labelled by [3H]-N-methylcarbamylcholine”, Journal of Computer-Aided Molecular Design15 (3): 247–258, Bibcode: 2001JCAMD..15..247T, doi:10.1023/A:1008140021426, PMID11289078
^Cooper, Julia C.; Gutbrod, Oliver; Witzemann, Veit; Methfessel, Christoph (1996), “Pharmacology of the nicotinic acetylcholine receptor from fetal rat muscle expressed in Xenopus oocytes”, European Journal of Pharmacology309 (3): 287–298, doi:10.1016/0014-2999(96)00294-4, PMID8874153
^Carter, Chris R.J.; Cao, Liren; Kawai, Hideki; Smith, Peter A.; Dryden, William F.; Raftery, Michael A.; Dunn, Susan M.J. (2007), “Chain length dependence of the interactions of bisquaternary ligands with the Torpedo nicotinic acetylcholine receptor”, Biochemical Pharmacology73 (3): 417–426, doi:10.1016/j.bcp.2006.10.011, PMID17118342
^Charton, Yves; Guillonneau, Claude.; Lockhart, Brian; Lestageb, Pierre; Goldsteina, Solo (2008), “Preparation and affinity profile of novel nicotinic ligands”, Bioorganic & Medicinal Chemistry Letters18 (6): 2188–2193, doi:10.1016/j.bmcl.2007.12.075, PMID18262785
^Walker, Daniel P.; Wishka, Donn G.; Piotrowski, David W.; Jia, Shaojuan; Reitz, Steven C.; Yates, Karen M.; Myers, Jason K.; Vetman, Tatiana N. et al. (2006), “Design, synthesis, structure–activity relationship, and in vivo activity of azabicyclic aryl amides as a7 nicotinic acetylcholine receptor agonists”, Bioorganic & Medicinal Chemistry14 (24): 8219–8248, doi:10.1016/j.bmc.2006.09.019, PMID17011782
^ abcdRang, H. P. (2003), Pharmacology, Edinburgh: Churchill Livingstone, ISBN978-0-443-07145-4 Page 149
^Dani, John A.; Biasi, Mariella De (2001), “Cellular mechanisms of nicotine addiction”, Pharmacology Biochemistry and Behavior70 (4): 439–446, doi:10.1016/S0091-3057(01)00652-9, PMID11796143
^Unless else specified in boxes, then reference is: Table 10-3 in: Rod Flower; Humphrey P. Rang; Maureen M. Dale; Ritter, James M. (2007). Rang & Dale's pharmacology. Edinburgh: Churchill Livingstone. ISBN978-0-443-06911-6