^ abcdeEl Murr, N.; Sheats, J. E.; Geiger, W. E.; Holloway, J. D. L. (1979). “Electrochemical Reduction Pathways of the Rhodocenium Ion. Dimerization and Reduction of Rhodocene”. Inorg. Chem.18 (6): 1443-1446. doi:10.1021/ic50196a007.
An industrial application of transition metal organometallic chemistry appeared as early as the 1880s, when Ludwig Mond showed that nickel can be purified by using CO to pick up nickel in the form of gaseous Ni(CO)4 that can easily be separated from solid impurities and later be thermally decomposed to give pure nickel.
... Recent work has shown the existence of a growing class of metalloenzymes having organometallic ligand environments - considered as the chemistry of metal ions having C-donor ligands such as CO or the methyl group
"
^Fischer, E. O.; Wawersik, H. (1966). “Uber Aromatenkomplexe von Metallen. LXXXVIII. Uber Monomeres und Dimeres Dicyclopentadienylrhodium und Dicyclopentadienyliridium und Uber Ein Neues Verfahren Zur Darstellung Ungeladener Metall-Aromaten-Komplexe” (German). J. Organomet. Chem.5 (6): 559-567. doi:10.1016/S0022-328X(00)85160-8.
^Keller, H. J.; Wawersik, H. (1967). “Spektroskopische Untersuchungen an Komplexverbindungen. VI. EPR-spektren von (C5H5)2Rh und (C5H5)2Ir” (German). J. Organomet. Chem.8 (1): 185-188. doi:10.1016/S0022-328X(00)84718-X.
^Zeise, W. C. (1831). “Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen” (German). Ann. der Physik97 (4): 497-541. Bibcode: 1831AnP....97..497Z. doi:10.1002/andp.18310970402.
^Federman Neto, A.; Pelegrino, A. C.; Darin, V. A. (2004). “Ferrocene: 50 Years of Transition Metal Organometallic Chemistry - From Organic and Inorganic to Supramolecular Chemistry”. ChemInform35 (43). doi:10.1002/chin.200443242. (Abstract; original published in Trends Organomet. Chem., 4:147-169, 2002)
^ abCotton, F. A.; Whipple, R. O.; Wilkinson, G. (1953). “Bis-Cyclopentadienyl Compounds of Rhodium(III) and Iridium(III)”. J. Am. Chem. Soc.75 (14): 3586-3587. doi:10.1021/ja01110a504.
^Mingos, D. M. P. (2001). “A Historical Perspective on Dewar's Landmark Contribution to Organometallic Chemistry”. J. Organomet. Chem.635 (1-2): 1-8. doi:10.1016/S0022-328X(01)01155-X.
^Jacobson, D. B.; Byrd, G. D.; Freiser, B. S. (1982). “Generation of Titanocene and Rhodocene Cations in the Gas Phase by a Novel Metal-Switching Reaction”. J. Am. Chem. Soc.104 (8): 2320-2321. doi:10.1021/ja00372a041.
^He, H. T. (1999). Synthesis and Characterisation of Metallocenes Containing Bulky Cyclopentadienyl Ligands (PhD thesis). University of Sydney. OCLC222646266
^Collins, J. E.; Castellani, M. P.; Rheingold, A. L.; Miller, E. J.; Geiger, W. E.; Rieger, A. L.; Rieger, P. H. (1995). “Synthesis, Characterization, and Molecular-Structure of Bis(tetraphenylcyclopentadienyl)rhodium(II)”. Organometallics14 (3): 1232-1238. doi:10.1021/om00003a025.
^Connelly, N. G.; Geiger, W. E. (1996). “Chemical Redox Agents for Organometallic Chemistry”. Chem. Rev.96 (2): 877-910. doi:10.1021/cr940053x. PMID11848774.
^Wenzel, M.; Wu, Y. (1988). “Ferrocen-, Ruthenocen-bzw. Rhodocen-analoga von Haloperidol Synthese und Organverteilung nach Markierung mit 103Ru-bzw. 103mRh” (German). Int. J. Rad. Appl. Instrum. A.39 (12): 1237–1241. doi:10.1016/0883-2889(88)90106-2. PMID2851003.
^Wenzel, M.; Wu, Y. F. (1987). “Abtrennung von [103mRh]Rhodocen-Derivaten von den Analogen [103Ru]Ruthenocen-Derivaten und deren Organ-Verteilung” (German). Int. J. Rad. Appl. Instrum. A.38 (1): 67–69. doi:10.1016/0883-2889(87)90240-1. PMID3030970.
^Barlow, S.; O'Hare, D. (1997). “Metal–Metal Interactions in Linked Metallocenes”. Chem. Rev.97 (3): 637–670. doi:10.1021/cr960083v.
^Wagner, M. (2006). “A New Dimension in Multinuclear Metallocene Complexes”. Angew. Chem. Int. Ed.45 (36): 5916–5918. doi:10.1002/anie.200601787.