高度に保存された配列はしばしば重要な生物学的機能を有しており、遺伝疾患の原因を特定する際のスタート地点として有用である。多くの先天性代謝異常症やライゾソーム病は個々の保存された遺伝子が変化した結果であり、疾患の症状の根本的要因となる酵素の欠失または欠損が引き起こされている。遺伝疾患は、マウスやショウジョウバエといった実験動物とヒトの間で保存されている配列を特定し、その遺伝子をノックアウトしたときの影響を調べることで予測することができる[48][49][50]。またゲノムワイド関連解析も、疾患や health outcome と関連した保存配列の変化を同定するために用いられる[51][52]。
^Zuckerkandl, E; Pauling, LB (1965). “Evolutionary Divergence and Convergence in Proteins”. Evolving Genes and Proteins: 96–166. doi:10.1016/B978-1-4832-2734-4.50017-6.
^Eck, R. V.; Dayhoff, M. O. (15 April 1966). “Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences”. Science152 (3720): 363–366. doi:10.1126/science.152.3720.363.
^Kimura, M (17 February 1968). “Evolutionary Rate at the Molecular Level”. Nature217 (5129): 624–626. doi:10.1038/217624a0.
^King, J. L.; Jukes, T. H. (16 May 1969). “Non-Darwinian Evolution”. Science164 (3881): 788–798. doi:10.1126/science.164.3881.788.
^Chamary, JV; Hurst, Laurence D (2005). “Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals”. Genome Biology6 (9): R75. doi:10.1186/gb-2005-6-9-r75.
^Earl, Dent; Nguyen, Ngan; Hickey, Glenn; Harris, Robert S.; Fitzgerald, Stephen; Beal, Kathryn; Seledtsov, Igor; Molodtsov, Vladimir et al. (December 2014). “Alignathon: a competitive assessment of whole-genome alignment methods”. Genome Research24 (12): 2077–2089. doi:10.1101/gr.174920.114.
^Rouli, L.; Merhej, V.; Fournier, P.-E.; Raoult, D. (September 2015). “The bacterial pangenome as a new tool for analysing pathogenic bacteria”. New Microbes and New Infections7: 72–85. doi:10.1016/j.nmni.2015.06.005.
^Méric, Guillaume; Yahara, Koji; Mageiros, Leonardos; Pascoe, Ben; Maiden, Martin C. J.; Jolley, Keith A.; Sheppard, Samuel K.; Bereswill, Stefan (27 March 2014). “A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic Campylobacter”. PLoS ONE9 (3): e92798. doi:10.1371/journal.pone.0092798.
^Cooper, G. M. (17 June 2005). “Distribution and intensity of constraint in mammalian genomic sequence”. Genome Research15 (7): 901–913. doi:10.1101/gr.3577405.
^Pollard, K. S.; Hubisz, M. J.; Rosenbloom, K. R.; Siepel, A. (26 October 2009). “Detection of nonneutral substitution rates on mammalian phylogenies”. Genome Research20 (1): 110–121. doi:10.1101/gr.097857.109.
^Fan, Xiaodan; Zhu, Jun; Schadt, Eric E; Liu, Jun S (2007). “Statistical power of phylo-HMM for evolutionarily conserved element detection”. BMC Bioinformatics8 (1): 374. doi:10.1186/1471-2105-8-374.
^Bejerano, G. (28 May 2004). “Ultraconserved Elements in the Human Genome”. Science304 (5675): 1321–1325. doi:10.1126/science.1098119.
^Siepel, A. (1 August 2005). “Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes”. Genome Research15 (8): 1034–1050. doi:10.1101/gr.3715005.
^Harmston, N.; Baresic, A.; Lenhard, B. (11 November 2013). “The mystery of extreme non-coding conservation”. Philosophical Transactions of the Royal Society B: Biological Sciences368 (1632): 20130021–20130021. doi:10.1098/rstb.2013.0021.
^Faircloth, B. C.; McCormack, J. E.; Crawford, N. G.; Harvey, M. G.; Brumfield, R. T.; Glenn, T. C. (9 January 2012). “Ultraconserved Elements Anchor Thousands of Genetic Markers Spanning Multiple Evolutionary Timescales”. Systematic Biology61 (5): 717–726. doi:10.1093/sysbio/sys004.
^Faircloth, Brant C.; Branstetter, Michael G.; White, Noor D.; Brady, Seán G. (May 2015). “Target enrichment of ultraconserved elements from arthropods provides a genomic perspective on relationships among Hymenoptera”. Molecular Ecology Resources15 (3): 489–501. doi:10.1111/1755-0998.12328.
^Reneker, J.; Lyons, E.; Conant, G. C.; Pires, J. C.; Freeling, M.; Shyu, C.-R.; Korkin, D. (10 April 2012). “Long identical multispecies elements in plant and animal genomes”. Proceedings of the National Academy of Sciences109 (19): E1183–E1191. doi:10.1073/pnas.1121356109.
^Isenbarger, Thomas A.; Carr, Christopher E.; Johnson, Sarah Stewart; Finney, Michael; Church, George M.; Gilbert, Walter; Zuber, Maria T.; Ruvkun, Gary (14 October 2008). “The Most Conserved Genome Segments for Life Detection on Earth and Other Planets”. Origins of Life and Evolution of Biospheres38 (6): 517–533. doi:10.1007/s11084-008-9148-z.
^Harris, J. K. (12 February 2003). “The Genetic Core of the Universal Ancestor”. Genome Research13 (3): 407–412. doi:10.1101/gr.652803.
^Ban, Nenad; Beckmann, Roland; Cate, Jamie HD; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis LJ; Lindahl, Lasse et al. (February 2014). “A new system for naming ribosomal proteins”. Current Opinion in Structural Biology24: 165–169. doi:10.1016/j.sbi.2014.01.002.
^Gadagkar, Sudhindra R.; Rosenberg, Michael S.; Kumar, Sudhir (15 January 2005). “Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree”. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution304B (1): 64–74. doi:10.1002/jez.b.21026.
^Ludwig, W; Schleifer, KH (October 1994). “Bacterial phylogeny based on 16S and 23S rRNA sequence analysis.”. FEMS Microbiology Reviews15 (2–3): 155–73. doi:10.1111/j.1574-6976.1994.tb00132.x. PMID7524576.
^Hug, Laura A.; Baker, Brett J.; Anantharaman, Karthik; Brown, Christopher T.; Probst, Alexander J.; Castelle, Cindy J.; Butterfield, Cristina N.; Hernsdorf, Alex W. et al. (11 April 2016). “A new view of the tree of life”. Nature Microbiology1 (5): 16048. doi:10.1038/nmicrobiol.2016.48.
^Zhang, Liqing; Li, Wen-Hsiung (February 2004). “Mammalian Housekeeping Genes Evolve More Slowly than Tissue-Specific Genes”. Molecular Biology and Evolution21 (2): 236–239. doi:10.1093/molbev/msh010.
^Clermont, O.; Bonacorsi, S.; Bingen, E. (1 October 2000). “Rapid and Simple Determination of the Escherichia coli Phylogenetic Group”. Applied and Environmental Microbiology66 (10): 4555–4558. doi:10.1128/AEM.66.10.4555-4558.2000.
^Kullberg, Morgan; Nilsson, Maria A.; Arnason, Ulfur; Harley, Eric H.; Janke, Axel (August 2006). “Housekeeping Genes for Phylogenetic Analysis of Eutherian Relationships”. Molecular Biology and Evolution23 (8): 1493–1503. doi:10.1093/molbev/msl027.
^Schoch, C. L.; Seifert, K. A.; Huhndorf, S.; Robert, V.; Spouge, J. L.; Levesque, C. A.; Chen, W.; Bolchacova, E. et al. (27 March 2012). “Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi”. Proceedings of the National Academy of Sciences109 (16): 6241–6246. doi:10.1073/pnas.1117018109.
^Man, S. M.; Kaakoush, N. O.; Octavia, S.; Mitchell, H. (26 March 2010). “The Internal Transcribed Spacer Region, a New Tool for Use in Species Differentiation and Delineation of Systematic Relationships within the Campylobacter Genus”. Applied and Environmental Microbiology76 (10): 3071–3081. doi:10.1128/AEM.02551-09.
^Ranjard, L.; Poly, F.; Lata, J.-C.; Mougel, C.; Thioulouse, J.; Nazaret, S. (1 October 2001). “Characterization of Bacterial and Fungal Soil Communities by Automated Ribosomal Intergenic Spacer Analysis Fingerprints: Biological and Methodological Variability”. Applied and Environmental Microbiology67 (10): 4479–4487. doi:10.1128/AEM.67.10.4479-4487.2001.
^Ala, Ugo; Piro, Rosario Michael; Grassi, Elena; Damasco, Christian; Silengo, Lorenzo; Oti, Martin; Provero, Paolo; Di Cunto, Ferdinando et al. (28 March 2008). “Prediction of Human Disease Genes by Human-Mouse Conserved Coexpression Analysis”. PLoS Computational Biology4 (3): e1000043. doi:10.1371/journal.pcbi.1000043.
^Pandey, U. B.; Nichols, C. D. (17 March 2011). “Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery”. Pharmacological Reviews63 (2): 411–436. doi:10.1124/pr.110.003293.
^Huang, Hui; Winter, Eitan E; Wang, Huajun; Weinstock, Keith G; Xing, Heming; Goodstadt, Leo; Stenson, Peter D; Cooper, David N et al. (2004). Genome Biology5 (7): R47. doi:10.1186/gb-2004-5-7-r47.
^Ge, Dongliang; Fellay, Jacques; Thompson, Alexander J.; Simon, Jason S.; Shianna, Kevin V.; Urban, Thomas J.; Heinzen, Erin L.; Qiu, Ping et al. (16 August 2009). “Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance”. Nature461 (7262): 399–401. doi:10.1038/nature08309.
^Bertram, L. (2009). “Genome-wide association studies in Alzheimer's disease”. Human Molecular Genetics18: R137–R145. doi:10.1093/hmg/ddp406.
^Kellis, Manolis; Patterson, Nick; Endrizzi, Matthew; Birren, Bruce; Lander, Eric S. (15 May 2003). “Sequencing and comparison of yeast species to identify genes and regulatory elements”. Nature423 (6937): 241–254. doi:10.1038/nature01644.
^Marchler-Bauer, A.; Lu, S.; Anderson, J. B.; Chitsaz, F.; Derbyshire, M. K.; DeWeese-Scott, C.; Fong, J. H.; Geer, L. Y. et al. (24 November 2010). “CDD: a Conserved Domain Database for the functional annotation of proteins”. Nucleic Acids Research39 (Database): D225–D229. doi:10.1093/nar/gkq1189.