^Butcher, J. C. (1996). A history of Runge-Kutta methods. Applied numerical mathematics, 20(3), 247-260.
^Hochbruck, M., & Ostermann, A. (2010). Exponential integrators. en:Acta Numerica, 19, 209-286.
^Al-Mohy, A. H., & Higham, N. J. (2011). Computing the action of the matrix exponential, with an application to exponential integrators. en:SIAM journal on scientific computing, 33(2), 488-511.
^Monroe, J. L. (2002). Extrapolation and the Bulirsch-Stoer algorithm. Physical Review E, 65(6), 066116.
^Kirpekar, S. (2003). Implementation of the Bulirsch Stoer extrapolation method. Department of Mechanical Engineering, UC Berkeley/California.
^Hirayama, H. (2002). Solution of ordinary differential equations by Taylor series method. JSIAM, 12, 1-8.
^Hirayama, H. (2015). Performance of a Higher-Order Numerical Method for Solving Ordinary Differential Equations by Taylor Series. In Integral Methods in Science and Engineering (pp. 321-328). Birkhäuser, Cham.
^Breuer, B., Plum, M., & McKenna, P. J. (2001). "Inclusions and existence proofs for solutions of a nonlinear boundary value problem by spectral numerical methods." In Topics in Numerical Analysis (pp. 61–77). Springer, Vienna. ISBN978-3-211-83673-6, doi:10.1007/978-3-7091-6217-0_6.
^ abcLohner,R.J.,Enclosing the Solution of Ordinary lnitial and Boundary Value Problems, Computer arithmetic:Scientific Computation and Programming Languages,Kaucher,E.,Kulisch,U., Ullrich,Ch.(eds.), B.G.Teubner,Stuttgart (1987), 255−286.
^Rihm, R. (1994). Interval methods for initial value problems in ODEs. Topics in Validated Computations, 173-207.
^Hungria, A., Lessard, J. P., & Mireles-James, J. D. (2014). Radii polynomial approach for analytic solutions of differential equations: Theory, examples, and comparisons. Math. Comp.
^Nedialkov, N. S., Jackson, K. R., & Pryce, J. D. (2001). An effective high-order interval method for validating existence and uniqueness of the solution of an IVP for an ODE. Reliable Computing, 7(6), 449-465.
^Corliss, G. F. (1989). Survey of interval algorithms for ordinary differential equations. Applied Mathematics and Computation, 31, 112-120.
^Nedialkov, N. S. (2000). Computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation (Ph.D. thesis). University of Toronto.
^Eijgenraam, P. (1981). The solution of initial value problems using interval arithmetic: formulation and analysis of an algorithm. MC Tracts.
^Nedialkov, N. S., & Jackson, K. R. (1999). An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation. Reliable Computing, 5(3), 289-310.
^Nedialkov, N. S., Jackson, K. R., & Corliss, G. F. (1999). Validated solutions of initial value problems for ordinary differential equations. Applied Mathematics and Computation, 105(1), 21-68.
^Berz, M., & Makino, K. (1998). Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models. Reliable computing, 4(4), 361-369.
^Kashiwagi, M. (1995). Numerical Validation for Ordinary Differential Equations using Power Series Arithmetic. In Numerical Analysis Of Ordinary Differential Equations And Its Applications (pp. 213-218).
^相馬隆郎, & 大石進一. (2003). 精度保証付き数値計算法を用いた常微分方程式の全解探索アルゴリズム. 電子情報通信学会論文誌 A, 86(6), 663-673.
^Takayasu, A., Matsue, K., Sasaki, T., Tanaka, K., Mizuguchi, M., & Oishi, S. I. (2017). Numerical validation of blow-up solutions of ordinary differential equations. en:Journal of Computational and Applied Mathematics, 314, 10-29.
^Matsue, K., & Takayasu, A. (2019). Rigorous numerics of blow-up solutions for ODEs with exponential nonlinearity. arXiv preprint arXiv:1902.01842.
^Hassard, B., Zhang, J., Hastings, S. P., & Troy, W. C. (1994). A computer proof that the Lorenz equations have “chaotic” solutions. Applied Mathematics Letters, 7(1), 79-83.
^Mischaikow, K., & Mrozek, M. (1998). Chaos in the Lorenz equations: A computer assisted proof. Part II: Details. en:Mathematics of Computation, 67(223), 1023-1046.
^Mischaikow, K., Mrozek, M., & Szymczak, A. (2001). Chaos in the lorenz equations: A computer assisted proof part iii: Classical parameter values. Journal of Differential Equations, 169(1), 17-56.
^Galias, Z., & Zgliczyński, P. (1998). Computer assisted proof of chaos in the Lorenz equations. Physica D: Nonlinear Phenomena, 115(3-4), 165-188.
^Tucker, W. (1999). The Lorenz attractor exists. Comptes Rendus de l'Académie des Sciences-Series I-Mathematics, 328(12), 1197-1202.
^Zgliczynski, P. (1997). Computer assisted proof of chaos in the Rössler equations and in the Hénon map. Nonlinearity, 10(1), 243.
^Makino, K., & Berz, M. (2006). Cosy infinity version 9. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 558(1), 346-350.
^Berz, M., Makino, K., Shamseddine, K., Hoffstätter, G. H., & Wan, W. (1996). 32. COSY INFINITY and Its Applications in Nonlinear Dynamics.
^S.M. Rump: INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999.
^Overview of kv – a C++ library for verified numerical computation, Masahide Kashiwagi, SCAN 2018.
Shampine, L. F. (2018). Numerical solution of ordinary differential equations. Routledge.
Dormand, John R. (1996), Numerical Methods for Differential Equations: A Computational Approach, Boca Raton: en:CRC Press.
Press, William H.; Teukolsky, Saul A.; Vetterling, William T.; Flannery, Brian P. (1992). Numerical Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University Press. doi:10.2277/0521431085. ISBN978-0-521-43108-8