^Bruce Chandler and Wilhelm Magnus. The history of combinatorial group theory. A case study in the history of ideas. Studies in the History of Mathematics and Physical Sciences, vo. 9. Springer-Verlag, New York, 1982.
^Greendlinger, Martin (1960). “Dehn's algorithm for the word problem”. Communications on Pure and Applied Mathematics13 (1): 67–83. doi:10.1002/cpa.3160130108.
^Greendlinger, Martin (1961). “An analogue of a theorem of Magnus”. Archiv der Mathematik12 (1): 94–96. doi:10.1007/BF01650530.
^J.-P. Serre, Trees. Translated from the 1977 French original by John Stillwell. Springer-Verlag, Berlin-New York, 1980. ISBN3-540-10103-9.
^ abMikhail Gromov, Hyperbolic Groups, in "Essays in Group Theory" (Steve M. Gersten, ed.), MSRI Publ. 8, 1987, pp. 75–263.
^Mikhail Gromov, "Asymptotic invariants of infinite groups", in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
^Iliya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002. From the Introduction:" In the last fifteen years geometric group theory has enjoyed fast growth and rapidly increasing influence. Much of this progress has been spurred by remarkable work of M. L. Gromov [in Essays in group theory, 75–263, Springer, New York, 1987; in Geometric group theory, Vol. 2 (Sussex, 1991), 1–295, Cambridge Univ. Press, Cambridge, 1993], who has advanced the theory of word-hyperbolic groups (also referred to as Gromov-hyperbolic or negatively curved groups)."
^Brian Bowditch, Hyperbolic 3-manifolds and the geometry of the curve complex.European Congress of Mathematics, pp. 103–115, Eur. Math. Soc., Zürich, 2005. From the Introduction:" Much of this can be viewed in the context of geometric group theory. This subject has seen very rapid growth over the last twenty years or so, though of course, its antecedents can be traced back much earlier. [...] The work of Gromov has been a major driving force in this. Particularly relevant here is his seminal paper on hyperbolic groups [Gr]."
^Elek, Gabor (2006). “The mathematics of Misha Gromov”. Acta Mathematica Hungarica113 (3): 171–185. doi:10.1007/s10474-006-0098-5.
^Geometric group theory. Vol. 1. Proceedings of the symposium held at Sussex University, Sussex, July 1991. Edited by Graham A. Niblo and Martin A. Roller. London Mathematical Society Lecture Note Series, 181. Cambridge University Press, Cambridge, 1993. ISBN0-521-43529-3.
^Mikhail Gromov, Asymptotic invariants of infinite groups, in "Geometric Group Theory", Vol. 2 (Sussex, 1991), London Mathematical Society Lecture Note Series, 182, Cambridge University Press, Cambridge, 1993, pp. 1–295.
^Iliya Kapovich and Nadia Benakli. Boundaries of hyperbolic groups. Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), pp. 39–93, Contemp. Math., 296, Amer. Math. Soc., Providence, RI, 2002.
^Kramer, Linus; Shelah, Saharon; Tent, Katrin; Thomas, Simon (2005). “Asymptotic cones of finitely presented groups”. Advances in Mathematics193 (1): 142–173. arXiv:math/0306420. doi:10.1016/j.aim.2004.04.012.
^Schwartz, R.E. (1995). “The quasi-isometry classification of rank one lattices”. Publications Mathématiques de l'Institut des Hautes Études Scientifiques82 (1): 133–168. doi:10.1007/BF02698639.
^Zlil Sela, Diophantine geometry over groups and the elementary theory of free and hyperbolic groups. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pp. 87–92, Higher Ed. Press, Beijing, 2002.
^Kharlampovich, Olga; Myasnikov, Alexei (1998). “Tarski's problem about the elementary theory of free groups has a positive solution”. Electronic Research Announcements of the American Mathematical Society4: 101–8. doi:10.1090/S1079-6762-98-00047-X. MR1662319.
^D. B. A. Epstein, J. W. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston. Word Processing in Groups. Jones and Bartlett Publishers, Boston, MA, 1992.
^Sapir, Mark; Birget, Jean-Camille; Rips, Eliyahu (2002). “Isoperimetric and isodiametric functions of groups”. Annals of Mathematics156 (2): 345–466. JSTOR3597195.
^Birget, Jean-Camille; Olʹshanskiĭ, Aleksandr Yu.; Rips, Eliyahu; Sapir, Mark (2002). “Isoperimetric functions of groups and computational complexity of the word problem”. Annals of Mathematics156 (2): 467–518. JSTOR3597196.
^Bridson, M.R. (1999). “Fractional isoperimetric inequalities and subgroup distortion”. Journal of the American Mathematical Society12 (4): 1103–18. doi:10.1090/S0894-0347-99-00308-2. MR1678924.
^Rips, E.; Sela, Z. (1997). “Cyclic splittings of finitely presented groups and the canonical JSJ decomposition”. Annals of Mathematics (2)146 (1): 53–109. JSTOR2951832.
^Dunwoody, M.J.; Sageev, M.E. (1999). “JSJ-splittings for finitely presented groups over slender groups”. Inventiones Mathematicae135 (1): 25–44. doi:10.1007/s002220050278.
^Scott, P.; Swarup, G.A. (2002). “Regular neighbourhoods and canonical decompositions for groups”. Electronic Research Announcements of the American Mathematical Society8: 20–28. doi:10.1090/S1079-6762-02-00102-6. MR1928498.
^Bowditch, B.H. (1998). “Cut points and canonical splittings of hyperbolic groups”. Acta Mathematica180 (2): 145–186. doi:10.1007/BF02392898.
^Fujiwara, K.; Papasoglu, P. (2006). “JSJ-decompositions of finitely presented groups and complexes of groups”. Geometric and Functional Analysis16 (1): 70–125. arXiv:math/0507424. doi:10.1007/s00039-006-0550-2.
^Yu, G. (1998). “The Novikov conjecture for groups with finite asymptotic dimension”. Annals of Mathematics (2)147 (2): 325–355. JSTOR121011.
^G. Yu. The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Inventiones Mathematicae, vol 139 (2000), no. 1, pp. 201–240.
^Mineyev, I.; Yu, G. (2002). “The Baum–Connes conjecture for hyperbolic groups”. Inventiones Mathematicae149 (1): 97–122. arXiv:math/0105086. doi:10.1007/s002220200214.
^Bonk, M.; Kleiner, B. (2005). “Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary”. Geometry and Topology9: 219–246. arXiv:math.GR/0208135. doi:10.2140/gt.2005.9.219.
^M. Bourdon and H. Pajot. Quasi-conformal geometry and hyperbolic geometry. Rigidity in dynamics and geometry (Cambridge, 2000), pp. 1–17, Springer, Berlin, 2002.
^M. Bonk, Quasiconformal geometry of fractals. International Congress of Mathematicians. Vol. II, pp. 1349–1373, Eur. Math. Soc., Zürich, 2006.
^P. Tukia. Generalizations of Fuchsian and Kleinian groups. First European Congress of Mathematics, Vol. II (Paris, 1992), pp. 447–461, Progr. Math., 120, Birkhäuser, Basel, 1994.
^Yaman, A. (2004). “A topological characterisation of relatively hyperbolic groups”. Journal für die Reine und Angewandte Mathematik566: 41–89.
^Bestvina, M.; Feighn, M. (1995). “Stable actions of groups on real trees”. Inventiones Mathematicae121 (2): 287–321. doi:10.1007/BF01884300.
^M. Gromov. Random walk in random groups. Geometric and Functional Analysis, vol. 13 (2003), no. 1, pp. 73–146.
^Kapovich, I.; Miasnikov, A.; Schupp, P.; Shpilrain, V. (2003). “Generic-case complexity, decision problems in group theory, and random walks”. Journal of Algebra264 (2): 665–694. doi:10.1016/S0021-8693(03)00167-4.
^Kapovich, I.; Schupp, P.; Shpilrain, V. (2006). “Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups”. Pacific Journal of Mathematics223 (1): 113–140. doi:10.2140/pjm.2006.223.113.
^L. Bartholdi, R. I. Grigorchuk and Z. Sunik. Branch groups. Handbook of algebra, Vol. 3, pp. 989-1112, North-Holland, Amsterdam, 2003.
^V. Nekrashevych. Self-similar groups. Mathematical Surveys and Monographs, 117. American Mathematical Society, Providence, RI, 2005. ISBN0-8218-3831-8.
^Furman, A. (1999). “Gromov's measure equivalence and rigidity of higher rank lattices”. Annals of Mathematics (2)150 (3): 1059–81. JSTOR121062.
^Y. Shalom. The algebraization of Kazhdan's property (T). International Congress of Mathematicians. Vol. II, pp. 1283–1310, Eur. Math. Soc., Zürich, 2006.
^Culler, M.; Vogtmann, K. (1986). “Moduli of graphs and automorphisms of free groups”. Inventiones Mathematicae84 (1): 91–119. doi:10.1007/BF01388734.
^Bestvina, M.; Handel, M. (1992). “Train tracks and automorphisms of free groups”. Annals of Mathematics (2)135 (1): 1–51. JSTOR2946562.
^Dunwoody, M.J. (1985). “The accessibility of finitely presented groups”. Inventiones Mathematicae81 (3): 449–457. doi:10.1007/BF01388581.
^Bestvina, M.; Feighn, M. (1991). “Bounding the complexity of simplicial group actions on trees”. Inventiones Mathematicae103 (3): 449–469. doi:10.1007/BF01239522.
^Sela, Z. (1997). “Acylindrical accessibility for groups”. Inventiones Mathematicae129 (3): 527–565. doi:10.1007/s002220050172.
^H. Bass and A. Lubotzky. Tree lattices. With appendices by Bass, L. Carbone, Lubotzky, G. Rosenberg and J. Tits. Progress in Mathematics, 176. Birkhäuser Boston, Inc., Boston, MA, 2001. ISBN0-8176-4120-3.
^Kaimanovich, V.A. (2000). “The Poisson formula for groups with hyperbolic properties”. Annals of Mathematics (2)152 (3): 659–692. JSTOR2661351.
^Bestvina, M.; Kapovich, M.; Kleiner, B. (2002). “Van Kampen's embedding obstruction for discrete groups”. Inventiones Mathematicae150 (2): 219–235. arXiv:math/0010141. doi:10.1007/s00222-002-0246-7.
^Ivanov, S.V. (1994). “The free Burnside groups of sufficiently large exponents”. International Journal of Algebra and Computation4 (1n2): 1–309. doi:10.1142/S0218196794000026.
^Lysënok, I.G. (1996). “Infinite Burnside groups of even exponent”. Izvestiya: Mathematics60 (3): 453–654. doi:10.1070/im1996v060n03abeh000077.
Bridson, Martin R.; Haefliger, André (1999). Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. 319. Berlin: Springer-Verlag. ISBN3-540-64324-9
Coornaert, Michel; Delzant, Thomas; Papadopoulos, Athanase (1990). Géométrie et théorie des groupes : les groupes hyperboliques de Gromov. Lecture Notes in Mathematics. 1441. Springer-Verlag. ISBN3-540-52977-2. MR1075994
Coornaert, Michel; Papadopoulos, Athanase (1993). Symbolic dynamics and hyperbolic groups. Lecture Notes in Mathematics. 1539. Springer-Verlag. ISBN3-540-56499-3
de la Harpe, P. (2000). Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press. ISBN0-226-31719-6