^Dhillon, I. S., Parlett, B. N., & Vömel, C. (2006). The design and implementation of the MRRR algorithm. ACM Transactions on Mathematical Software (TOMS), 32(4), 533-560.
^Abe, K., Zhang, S. L., & Mitsui, T. (1997). MRTR method: An iterative method based on the three-term recurrence formula of CG-type for nonsymmetric matrix. JSIAM, 7, 37-50.
^Sakurai, T., & Tadano, H. (2007). CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hokkaido mathematical journal, 36(4), 745-757.
^Miyatake, Y., Sogabe, T., & Zhang, S. L. (2018). On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems. en:Journal of Computational and Applied Mathematics, 342, 58-69.
^Tsutomu Ikegami, Tetsuya Sakurai and Umpei Nagashima: A Filter Diagonalization for Generalized Eigenvalue Problems Based on the Sakurai-Sugiura Projection Method, J. Compu. Appl. Math., Vol.233, No.8, pp.1927–1936 (2010).
^Anthony P. Austin and Lloyd N. Trefethen: Computing Eigenvalues of Real Symmetric Matrices with Rational Filters in Real Arithmetic, SIAM J. Sci. Comput, Vol.37, No.3, pp.A1365–A1387 (2015).
^Hiroshi Murakami: Filter Diagonalization Method by Using a Polynomial of a Resolvent as the Filter for a Real Symmetric-Definite Generalized Eigenproblem, in proceedings of EPASA2015, Springer, LNCSE-117, pp.205–232 (2018).
^Hiroshi Murakami: Filters Consist of a Few Resolvents to Solve Real Symmetric-Definite Generalized Eigenproblems, Japan J. Indust. Appl. Math., Vol.36, No.2, pp.579–618 (July 2019).
^Christopher C. Paige and Michael A. Saunders, Solution of sparse indefinite systems of linear equations, en:SIAM Journal on Numerical Analysis 1975; 12(4):617–629.
^Krasnoselskii, M. and Krein, S. (1952). An iteration process with minimal residuals. Mat. Sb. N.S., 31, 315–334.
^Freund, R. and Nachtigal, N. "QMR: A Quasi-Minimal Residual Method for Non-Hermitian Linear Systems." Numer. Math. 60, 315-339, 1991.
^Freund, R. and Nachtigal, N. "An Implementation of the QMR Method Based on Coupled Two-Term Recurrences." SIAM J. Sci. Statist. Comput. 15, 313-337, 1994.
^R. Freund: Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices, SIAM Journal on Scientific and Statistical Computing, Vol. 13, No. 1, pp. 425–448 (1992).
^X.-M. Gu, T.-Z. Huang, L. Li, H.-B. Li, T. Sogabe and M. Clemens: Quasi-Minimal Residual Variants of the COCG and COCR Methods for Complex Symmetric Linear Systems in Electromagnetic Simulations, IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, pp. 2859–2867 (2014).
^Roland W. Freund, A transpose-free quasi-minimal residual algorithm for non-Hermitian linear systems, en:SIAM Journal on Scientific Computing 1993; 14(2):470–482.
^Hestenes, M. R., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. Washington, DC: NBS.
^M. F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525--533, 1993.
^H. A. van der Vorst and J. B. M. Melissen: A Petrov-Galerkin type method for solving , where is symmetric complex, IEEE Trans. Mag., Vol. 26, No. 2, pp. 706–708 (1990).
^S. L. Zhang "GPBiCG: Generalized Product-type Methods Based on Bi-CG for Solving
Nonsymmetric Linear Systems", SIAM J. Sci. Stat. Comput. , vol.18, no.2, pp.537-551,
March 1997.
^Van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on scientific and Statistical Computing, 13(2), 631-644.
^M. H.Gutknecht,Variants of BiCGSTAB for Matrices with Complex Spectrum,SIAM J. Sci. Statist. Comput.,14(1993), 1020-1033.
^Tony F. Chan, Efstratios Gallopoulos, Valeria Simoncini, Tedd Szeto and Charles H. Tong, A quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmetric systems, en:SIAM Journal on Scientific Computing 1994; 15(2):338–347.
^D. P. O’Leary: The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29 (1980), 293–322.
^A. A. Nikishin, A. Yu. Yeremin: Variable block CG algorithms for solving large sparse symmetric positive definite linear systems on parallel computers, I: general iterative methods, SIAM J. Matrix Anal. Appl., 16 (1995), 1135–1153.
^A. El Guennouni, K. Jbilou, H. Sadok: A block version of BiCGSTAB for linear systems with multiple right-hand sides, Electron. Trans. Numer. Anal, 16 (2003), 129–142.
^H. Tadano, T. Sakurai, Y. Kuramashi: Block BiCGGR: a new block Krylov subspace method for computing high accuracy solutions: JSIAM Lett., 1 (2009), 44–47.
^Tadano, H. (2019). Development of the Block BiCGGR2 method for linear systems with multiple right-hand sides. Japan Journal of Industrial and Applied Mathematics, 1-15.
^Tadano, H., & Kuramoto, R. (2019). Accuracy improvement of the Block BiCGSTAB method for linear systems with multiple right-hand sides by group-wise updating technique. Journal of Advanced Simulation in Science and Engineering, 6(1), 100-117.
^Bini, D. A., Higham, N. J., & Meini, B. (2005). Algorithms for the matrix pth root. Numerical Algorithms, 39(4), 349-378.
^Deadman, E., Higham, N. J., & Ralha, R. (2012, June). Blocked Schur algorithms for computing the matrix square root. In International Workshop on Applied Parallel Computing (pp. 171-182). Springer, Berlin, Heidelberg.
^Hargreaves, G. I., & Higham, N. J. (2005). Efficient algorithms for the matrix cosine and sine. Numerical Algorithms, 40(4), 383-400.
^Kobayashi, Y., Ogita, T., & Ozaki, K. (2017). Acceleration of a preconditioning method for ill-conditioned dense linear systems by use of a BLAS-based method. Reliable Computing, 25, 15-23.
^Kobayashi, Y., & Ogita, T. (2016). Accurate and efficient algorithm for solving ill-conditioned linear systems by preconditioning methods. Nonlinear Theory and Its Applications, IEICE, 7(3), 374-385.
^A fast and efficient algorithm for solving ill-conditioned linear systems (JSIAM Letters Vol.7 (2015) pp.1-4) Yuka Kobayashi, Takeshi Ogita.
^Yanagisawa, Y., Ogita, T., & Oishi, S. (2014). Convergence analysis of an algorithm for accurate inverse Cholesky factorization. Japan Journal of Industrial and Applied Mathematics, 31(3), 461-482.
^Yanagisawa, Y., Ogita, T., & Oishi, S. I. (2014). A modified algorithm for accurate inverse Cholesky factorization. Nonlinear Theory and Its Applications, IEICE, 5(1), 35-46.
^Yanagisawa, Y., & Ogita, T. (2013). Convergence analysis of accurate inverse Cholesky factorization. JSIAM Letters, 5, 25-28.
^Minamihata, A., Sekine, K., Ogita, T., Rump, S. M., & Oishi, S. I. (2015). Improved error bounds for linear systems with H-matrices. Nonlinear Theory and Its Applications, IEICE, 6(3), 377-382.
^Alefeld, G., Gienger, A., & Mayer, G. (1994). Numerical validation for an inverse matrix eigenvalue problem. Computing, 53(3-4), 311-322.
^Miyajima, S. (2017). Verified Solutions of Inverse Symmetric Eigenvalue Problems. Reliable Computing, 24(1), 31-44.
^Demmel, J., & Kahan, W. (1990). Accurate singular values of bidiagonal matrices. SIAM Journal on Scientific and Statistical Computing, 11(5), 873-912.
^Oishi, S. (2001). Fast enclosure of matrix eigenvalues and singular values via rounding mode controlled computation. Linear algebra and its Applications, 324(1-3), 133-146.
^Shinya Miyajima, Verified computation for the Hermitian positive definite solution of the conjugate discrete-time algebraic Riccati equation, en:Journal of Computational and Applied Mathematics, Volume 350, Pages 80-86, April 2019.
^inya Miyajima, Fast verified computation for the minimal nonnegative solution of the nonsymmetric algebraic Riccati equation, Computational and Applied Mathematics, Volume 37, Issue 4, Pages 4599-4610, September 2018.
^Shinya Miyajima, Fast verified computation for the solution of the T-congruence Sylvester equation, Japan Journal of Industrial and Applied Mathematics, Volume 35, Issue 2, Pages 541-551, July 2018.
^Shinya Miyajima, Fast verified computation for the solvent of the quadratic matrix equation, The Electronic Journal of Linear Algebra, Volume 34, Pages 137-151, March 2018
^Shinya Miyajima, Fast verified computation for solutions of algebraic Riccati equations arising in transport theory, Numerical Linear Algebra with Applications, Volume 24, Issue 5, Pages 1-12, October 2017.
^Shinya Miyajima, Fast verified computation for stabilizing solutions of discrete-time algebraic Riccati equations, en:Journal of Computational and Applied Mathematics, Volume 319, Pages 352-364, August 2017.
^Shinya Miyajima, Fast verified computation for solutions of continuous-time algebraic Riccati equations, Japan Journal of Industrial and Applied Mathematics, Volume 32, Issue 2, Pages 529-544, July 2015.
^Miyajima, S. (2019). Verified computation of the matrix exponential. Advances in Computational Mathematics, 45(1), 137-152.
^Miyajima, S. (2019). Verified computation for the matrix principal logarithm. Linear Algebra and its Applications, 569, 38-61.
^Iwasaki, M., & Nakamura, Y. (2006). Accurate computation of singular values in terms of shifted integrable schemes. Japan journal of industrial and applied mathematics, 23(3), 239.
^「Verification of dLVv Transformation for Singular Vector Computation with High Accuracy」 『In Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications』 Vol.II, pp.881-887 (2006, 6) Masami Takata, Taro Konda, Kinji Kimura, Yoshimasa Nakamura.
^「An Evaluation of Singular Value Computation by the Discrete Lotka-Volterra System」 『In Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications』 Vol.II, pp.410-416 (2005, 6) Masami Takata, Iwasaki Masashi, Kinji Kimura, Yoshimasa Nakamura.
^ abIwasaki, M., & Nakamura, Y. (2011). Positivity of dLV and mdLVs algorithms for computing singular values. Electronic Transactions on Numerical Analysis, 38, 184-201.
^Fukuda, A., Ishiwata, E., Iwasaki, M., & Nakamura, Y. (2008). The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues. Inverse Problems, 25(1), 015007.
^Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M., & Nakamura, Y. (2013). Integrable discrete hungry systems and their related matrix eigenvalues. Annali di Matematica Pura ed Applicata, 192(3), 423-445.
^Fukuda, A., Ishiwata, E., Iwasaki, M., & Nakamura, Y. (2009). On the qd-type discrete hungry Lotka-Volterra system and its application to the matrix eigenvalue algorithm. JSIAM Letters, 1, 36-39.
^Yamamoto, Y., & Fukaya, T. (2010). Differential qd algorithm for totally nonnegative Hessenberg matrices: introduction of origin shifts and relationship with the discrete hungry Lotka-Volterra system. JSIAM Letters, 2, 69-72.
^「An Improved Shift Strategy for the Modified Discrete Lotka-Volterra with Shift Algorithm」 『In Proceedings of 2011 International Conference on Parallel and Distributed Processing Techniques and Applications』 Vol.II, pp.720-726 (2011, 7) Masami Takata, Takumi Yamashita, Akira Ajisaka, Kinji Kimura, Yoshimasa Nakamura.
^「Speed-up in mdLVs by Limitation in Computational Number of Shift」 『In Proceedings of 2009 International Conference on Parallel and Distributed Processing Techniques and Applications』 Vol.II, pp.704-710 (2009, 7) Masami Takata, Kinji Kimura, Yoshimasa Nakamura.
^Takahashi, Y., Iwasaki, M., Fukuda, A., Ishiwata, E., & Nakamura, Y. (2018). Periodic convergence in the discrete hungry Toda equation. Journal of Physics A: Mathematical and Theoretical, 51(34), 344001.
^Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., & Nakamura, Y. (2013). On a shifted LR transformation derived from the discrete hungry Toda equation. Monatshefte für Mathematik, 170(1), 11-26.
^Fukuda, A., Yamamoto, Y., Iwasaki, M., Ishiwata, E., & Nakamura, Y. (2012). Error analysis for matrix eigenvalue algorithm based on the discrete hungry Toda equation. Numerical Algorithms, 61(2), 243-260.
^Toyokawa, H., Kimura, K., Takata, M., & Nakamura, Y. (2009). On parallelism of the I-SVD algorithm with a multi-core processor. JSIAM Letters, 1, 48-51.
Higham, N. J. (2008): Functions of Matrices: Theory and Computation, SIAM.
Higham, N. J. (2002): Accuracy and Stability of Numerical Algorithms, SIAM.
David S. Watkins (2008): The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM.
Liesen, J., & Strakos, Z. (2012): Krylov Subspace Methods: Principles and Analysis, Oxford Univ. Press, Oxford.
Claude Brezinski, Gérard Meurant and Michela Redivo-Zaglia (2022): A Journey through the History of Numerical Linear Algebra, SIAM, ISBN 978-1-61197-722-6.