この下界は、Aubry と André のほとんど厳密な早期の議論の後に、Avron、サイモンおよび Michael Herman によって示された。実際、 がスペクトルに属する時、この不等式は等式(Aubry-André の公式)になるが、これは Jean Bourgain と Svetlana Jitomirskaya によって示された[8]。
^Simon, Barry (2000). “Schrödinger operators in the twenty-first century”. Mathematical Physics 2000. London: Imp. Coll. Press. pp. 283–288. ISBN186094230X
^Avila, A. (2008). “The absolutely continuous spectrum of the almost Mathieu operator”. Preprint. arXiv:0810.2965.
^Gordon, A. Y.; Jitomirskaya, S.; Last, Y.; Simon, B. (1997). “Duality and singular continuous spectrum in the almost Mathieu equation”. Acta Math.178 (2): 169–183. doi:10.1007/BF02392693.
^Jitomirskaya, Svetlana Ya. (1999). “Metal-insulator transition for the almost Mathieu operator”. Ann. of Math.150 (3): 1159–1175. JSTOR121066.
^Avron, J.; Simon, B. (1982). “Singular continuous spectrum for a class of almost periodic Jacobi matrices”. Bull. Amer. Math. Soc.6 (1): 81–85. Zbl0491.47014.
^Jitomirskaya, S.; Simon, B. (1994). “Operators with singular continuous spectrum, III. Almost periodic Schrödinger operators”. Comm. Math. Phys.165 (1): 201–205. Zbl0830.34074.
^Last, Y.; Simon, B. (1999). “Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators”. Invent. Math.135 (2): 329–367. doi:10.1007/s002220050288.