真凸函数

数学解析学(特に、凸解析)と数理最適化の分野において、真凸函数(しんとつかんすう、: proper convex function)とは、拡大実数に値を取る凸函数 f で、少なくとも一つの x に対して

が成立し、すべての x に対して

が成立するもののことを言う。すなわち凸函数が真であるとは、その有効領域が空でなく、値として を取ることがないことを言う[1]。真でない凸函数は広義凸函数(improper convex function)と呼ばれる[2]

真凹函数とは、 が真凸函数であるような任意の函数 g のことを言う。

性質

[編集]

Rn 上のすべての真凸函数 f に対し、ある Rn 内の bR 内の β が存在して

がすべての x について成立する。

二つの真凸函数の和は必ずしも真あるいは凸ではない。例えば、集合 ベクトル空間 X 内の空でない凸集合であるなら、指示函数英語版 は真凸函数であるが、 であるなら は恒等的に に等しい。

二つの真凸函数の最小畳み込みは凸であるが、必ずしも真凸ではない[3]

参考文献

[編集]
  1. ^ Aliprantis, C.D.; Border, K.C. (2007). Infinite Dimensional Analysis: A Hitchhiker's Guide (3 ed.). Springer. p. 254. doi:10.1007/3-540-29587-9. ISBN 978-3-540-32696-0 
  2. ^ Rockafellar, R. Tyrrell (1997) [1970]. Convex Analysis. Princeton, NJ: Princeton University Press. p. 24. ISBN 978-0-691-01586-6 
  3. ^ Ioffe, Aleksandr Davidovich; Tikhomirov, Vladimir Mikhaĭlovich (2009), Theory of extremal problems, Studies in Mathematics and its Applications, 6, North-Holland, p. 168, ISBN 9780080875279, https://books.google.co.jp/books?id=iDRVxznSxUsC&pg=PA168&redir_esc=y&hl=ja .