D-막은 근본적으로 난부-고토 작용을 일반화한 디랙 작용(Dirac作用, 영어: Dirac action)을 따른다. 일반적으로, D-막은 게이지 전하를 띨 수 있다. 예를 들어 끈 이론에서의 라몽-라몽 p-형식과 딜라톤, 중력자와 상호작용한다. 이를 디랙-보른-인펠트 작용으로 나타낼 수 있다.[14] 점입자 (0-막)가 1-형식의 게이지 장과 상호작용하듯, Dp-막은 (p+1)-형식 라몽-라몽 게이지 장과 상호작용한다. 이를 미분 형식 전기역학이라고 한다.
정의에 따라, D-막은 열린 끈과 상호작용한다. D-막에 붙어 있는 열린 끈의 무질량 진동 모드의 일부는 D-막 위의 게이지 장을 나타내고, 나머지 무질량 모드는 D-막의 움직임을 나타낸다. 이에 따라서 D-막이 고정되지 않고, 동적인 개체라는 사실을 알 수 있다.
다른 막(기본 끈, NS5-막)과 달리, D-막은 T-이중성 아래 그 차원이 바뀐다. 구체적으로, Dp-막의 세계부피의 방향으로 축소화한 이론에 T-이중성을 가하면, D(p−1)-막을 얻는다. 반면, Dp-막의 세계부피의 방향이 아닌 방향으로 축소화한 이론에 T-이중성을 가하면, D(p+1)-막을 얻는다.
D-막은 시공의 차원에 따라 0차원의 D(−1)-막 (또는 D-순간자영어: D-instanton)부터 (초끈 이론의 경우) 10차원의 D9-막까지가 있다. (보손 끈 이론에서는 물론 D25-막까지 가능하다.)
D-막들은 일반적으로 불안정하다. 그러나 끈 이론이 라몽-라몽 장을 포함하고, D-막이 해당하는 라몽-라몽 전하를 가질 경우 안정되게 된다. 이는 초대칭의 깨짐으로도 이해할 수 있는데, 이러한 경우 D-막은 존재하는 초대칭의 절반만을 깨게 되므로, 남은 초대칭에 의하여 안정되게 된다. 이러한 상태를 BPS 상태라고 한다. ⅡA종 이론에서는 홀수 차수의 라몽-라몽 장이 존재하므로, 짝수 차원의 D-막(D0, D2, D4, D6, D8)이 안정하다. ⅡB종 이론에서는 짝수 차수의 라몽-라몽 장이 존재하므로, 홀수 차수의 D-막(D(−1), D1, D3, D5, D7, D9)이 안정하다. 즉, 이 묘사에서, 안정된 D-막은 시공간의 정수 계수 코호몰로지류로서 분류되며, 해당 D-막은 코호몰로지류에 해당하는 호몰로지류를 감게 된다. 정수 계수가 등장하는 이유는 디랙 양자화 조건 때문이다. (사실, 이 묘사는 위상 K이론을 통한 더 정확한 묘사의 근사에 불과하다.)
Ⅰ종 끈 이론은 ⅡB종 끈 이론에 오리엔티폴드를 가하여 얻을 수 있는데, 이 경우 D1 · D5 · D9-막이 안정하다. 또한, BPS가 아닌 안정한 D0-막이 존재한다.[17][18][19]
잡종 끈 이론에서는 열린 끈이 없으며, 따라서 D-막이 존재하지 않는다. (잡종 끈 이론을 구성하려면 오른쪽 모드와 왼쪽 모드를 다르게 잡아야 하는데, 닫힌 끈과 달리 열린 끈에서는 이 두 모드가 서로 같게 된다.)
같은 차원의 평행한 D-막들은 (BPS 성질에 의하여) 서로 인력 및 척력을 느끼지 않는다. 따라서 D-막들은 한 곳에 겹칠 수 있는데, 이 경우 열린 끈의 상태들에 천-페이턴 인자라는 군론적인 지수가 붙게 되며, 유효 이론에서는 이를 비가환 게이지 대칭으로 해석할 수 있다. 즉, 일반적으로 D-막들이 겹치게 되면 그 게이지 대칭이 확장되게 된다.
또한, D-막이 겹치는 경우 D-막의 위치는 더 이상 명확하지 않고, 비가환 기하학을 따르게 된다. 특히, 특별한 경우에는 D-막들은 퍼지 구를 이룰 수 있다. 이를 마이어스 효과(Myers效果, 영어: Myers effect)라고 한다.[2]:314–321[24]:241–242[25][26]
AdSp×Sq 꼴의 공간에서, 마찬가지로 점입자가 Sq−2 모양의 D(q−2)-막으로 바뀌게 된다. 이를 거대 중력자(巨大重力子, 영어: giant graviton)라고 하며, AdS/CFT 대응성에서 중요한 역할을 한다.[14]:§5.9[24]:657,660–661[25][27]
D-막들은 특수한 경우에 안정된 D-막 결합 상태(영어: bound state)를 이룰 수 있다. 두 개의 D-막들의 배치는 일반적으로 다음과 같은 표로 나타낸다.[2]:251[28]
막
0
1
2
3
4
5
6
7
8
9
D6
—
—
—
—
—
—
—
•
•
•
D2
—
—
—
•
•
•
•
•
•
•
위 표는 D6-막과 D2-막의 배치를 나타낸다. 여기서 점(•)은 막이 해당하는 공간축 방향으로 뻗어 있지 않는다(점입자처럼 보인다)는 뜻이고, 줄표는 막이 해당하는 방향으로 뻗어 있다는 뜻이다. 예를 들어, 위 표에서 D6-막은 방향으로, D2-막은 방향으로 뻗어 있다.
위 표에서, 10개의 방향 가운데 4개의 방향(3,4,5,6)의 경우, 두 막 중 하나는 뻗어 있지만 다른 하나는 뻗어 있지 않다. 이 수를 여차원이라고 한다. 여차원은 T-이중성에 불변이며,[2]:249 항상 짝수이다. (이는 주어진 이론에서 안정된 D-막의 차원은 항상 모두 짝수이거나 모두 홀수이기 때문이다.) 만약 여차원이 4의 배수라면 이 D-막 배열은 자동적으로 BPS가 되고, 따라서 (대부분의 경우) 안정하다.[2]:253 이 경우 결합 상태는 ¼ BPS(원래 초대칭 중 ¼만 남기고 나머지 초대칭들을 깨는 상태)다. D-막이 서로 결합하지 않는 경우에는 D-막들의 여차원이 4의 배수여야만 일부 초대칭을 보존하게 된다. 예를 들어, Ⅰ종 초끈 이론은 ⅡB종 초끈 이론에 시공간을 채우는 D9-막(과 오리엔티폴드 초평면)들을 가하여 얻는다. 이에 따라, 이 이론에서 존재할 수 있는 D-막들은 D(9−4)=D5-막과 D(9−8)=D1-막 밖에 없다.
만약 여차원이 2 또는 4인 경우, 한 막이 다른 막에 녹아 없어질 수 있다. 이 두 상태는 상당히 다르다.
여차원이 2인 경우, Dp-막에 D(p−2)-막이 녹아, U(1) 전기선속으로 대체될 수 있다.[2]:206, §9.1 이 경우, Dp-막에 U(1) 전자기장이 있으면 자동적으로 D(p−2)-막의 라몽-라몽 전하가 생기기 때문에, 총 라몽-라몽 전하는 보존된다. 이 경우에는 결합 상태는 하나의 D-막과 마찬가지로 ½BPS다.
여차원이 4인 경우, 2개 이상 겹쳐진 Dp-막에 D(p−4)-막이 녹을 수 있다.[2]:208, §9.2 Dp-막에서, 이는 차원 세계부피 중 (유클리드) 4차원 부분 공간에 양-밀스 순간자가 존재하는 것이다. 이 경우에는 결합 상태는 ¼BPS다. 양-밀스 순간자가 존재하려면 비가환 게이지 군이 필요하므로, 이는 2개 이상 겹쳐진 Dp-막 속에서만 가능하다.
반면, 여차원이 6인 경우, 예를 들어 D6-막에 D0-막이 붙으려고 하는 경우에는, D0-막이 녹은 상태가 모든 초대칭을 깨기 때문에 불안정하다.[2]:260
ⅡB 초끈 이론에서, D1-막(D-끈)과 기본 끈(F-끈)은 ⅡB 초끈 이론의 PSL(2,ℤ)S-이중성에 대하여 2중항(doublet)으로 변환하며, 따라서 D1-막과 F-끈의 결합 상태가 존재한다.[2]:255[29]p개의 F-끈과 q개의 D-끈이 결합한 끈을 (p,q) 끈(영어: (p,q)-string)이라고 한다. 이 경우, p와 q는 서로소여야 한다. (만약 그렇지 않은 경우에는 n개의 (p/n, q/n)-끈으로 해체될 수 있다.) (p,q) 끈들은 ½BPS 상태이며, 이들이 보존하는 초대칭들은 원래 D-끈과 F-끈이 보존하는 초대칭들의 선형결합이다.
마찬가지로, D5-막과 NS5-막은 S-이중성의 2중항으로 변환하며, 이에 따라서 (p,q)5-막(영어: (p,q)5-brane)이 존재한다. D7-막의 경우에도 마찬가지로 다양한 결합 상태가 존재하며, 이들은 F-이론으로 분류된다.
D-막을 오비폴드 특이점에 배치할 경우, D-막은 분수 막(分數幕, 영어: fractional brane)이라는 조각들로 분해된다. 구체적으로, 유클리드 공간의, 유한군의 작용에 대한 오비폴드를 생각하자. 1의 D-막을 오비폴드 특이점에 배치한다고 하자. 이는 오비폴드를 가하기 이전에 개의 원상에 해당한다.
이 개의 D-막들의 천-페이턴 인자의 공간 은 의 표현을 이룬다. 이는 일반적으로 기약 표현이 아니며, 이러한 상태는 기약 표현에 해당하는 상태들의 결합으로 여길 수 있다. 이러한 기약 표현에 해당하는 상태를 분수 막이라고 한다.
가장 간단한 경우로, (차 순환군)을 생각하자. 오비폴드 점 근처에서, 오비폴드의 원상에 해당하는 개의 D-막의 천-페이턴 지표의 공간 은 (순환군의 기약 표현은 모두 1차원이므로) 개의 기약 표현들로 분해된다. 각 기약 표현은 (오비폴드를 가한 뒤의 관점에서) 개의 D-막의 질량을 가지며, 따라서 분수 막을 이룬다.
↑Olsen, Kasper; Szabo, Richard J. (1999). “Constructing D-branes from K-theory”. 《Advances in Theoretical and Mathematical Physics》 (영어) 3: 889–1025. arXiv:hep-th/9907140. Bibcode:1999hep.th....7140O.