Белковинско натсемејство — највисокиот степен на групирање (клад) на белковините за кои постојат докази за заедничко потекло (види хомологија). Обично заедничкото потекло се заклучува по пат на структурно порамнување[1] и механистичка сличност, дури и доколку не постои очигледна сличност во аминокиселинската низа.[2] Но и покрај малата сличност во низите, понекогаш може да биде откриена низна хомологија. Едно белковинско натсемејство обично содржи повеќе белковински семејства, а членовите во рамките на едно семејство покажуваат значителна сличност во низите. Поимот белковински клан обично се користи за именување на натсемејствата на протеази и гликозил хидролази, во MEROPS и CAZy класификационите системи.[2][3]
Горе, сочуваност на вторичната структура на 80 членови од PA кланот на протеази (натсемејство). H се однесува на алфа-завојница, E се однесува на бета-плоча, а L на петелка. Долу, сочуваност на низата за истото порамнување. Стрелките ги означуваат остатоците на каталитичката тријада. Порамнувањето е на основа на структури од страна на DALI.
Белковинските натсемејства можат да бидат идентификувани со голем број на методи.
Историски гледано, сличноста помеѓу различните аминокиселински низи е најчестиот метод за откривање на хомологија.[5] Сличноста во низите се смета за добар предвидувач на сродност, бидејќи сличните низи најверојатно се резултат на генска дупликација и дивергентна еволуција, отколку на конвергентна еволуција. Аминокиселинската низа се смета за почувствителен метод за детекција на хомологност, бидејќи аминокиселинските низи обично се посочувани во текот на еволуцијата од РНК-низите (поради дегенеративноста на генетскиот код). Бидејќи некои од аминокиселините имаат слични физичко-хемиски својства (на пример, електричен полнеж, хидрофобност, големина), конзервативните мутации често се неутрални и немаат влијание на функцијата. Најсочуваните региони во низата на белковините се оние кои се функционално најважни, како што се каталитичките и врзувачките места, бидејќи овие региони најмалку толерираат промени.
Употребата на сличноста во низата за откривање на хомологија има неколку ограничувања. Не постои минимално ниво на сличност во низата кое гарантира добивање на идентични структури. После долги периоди на еволуција, сродните белковини може да ја изгубат сличноста во низите. Низите кои претрпеле мноштво на вметнувања и бришења во текот на еволуцијата, понекогаш тешко може да се порамнат за да се идентификуваат хомологните региони. Во PA кланот на протеази, на пример, не е сочуван ниту еден аминокиселински остаток во низите на различните припадници на ова натсемејство, дури и оние во склоп на каталитичката тријада. Спротивно на тоа, поединечните семејства кои го сочинуваат натсемејството се дефинирани врз основа на порамнувањето на низите, на пример семејството на протеази C04 во рамките на кланот PA.
Сепак, сличноста во низата е најчесто користениот доказ за сродство, бидејќи бројот на познати низи е многу поголем од бројот на познати третични структури.[6] Во отсуство на структурни информации, сличноста во низите ги стеснува границите за вклучување на нови белковини кон одредено натсемејство.[6]
Структурата е еволутивно посочувана од низата, така што белковини со многу слични структури можат да имаат сосема различни низи.[7] Во текот на многу долги временски периоди на еволуција, многу малку аминокиселински остатоци се сочувани во низата, сепак елементите на вторичната структура и третичните структурни мотиви се доста сочувани. Одредена белковинска динамика[8] и конформациони промени на белковинската структура исто така може да бидат сочувани, како што се среќава кај серпинското натсемејство.[9] Од овие причини, третичната структура на белковините може да се користи за откривање на хомологност помеѓу белковините, дури и кога во нивните низи нема докази за сродство. Програмите за структурно порамнување, како што е DALI, ја користат 3Д-структурата на белковината од интерес за да најде белковини со слични склопови.[10] Меѓутоа, во ретки случаи, сродните белковини може да еволуираат за да станат структурно различни, па во овие случаи сродноста може да се заклучи само со употреба на други посебни методи.[11][12][13]
Каталитичкиот механизам на ензимите во рамките на едно натсемејство најчесто е сочуван, иако специфичноста кон супстратот може да биде значително различна.[14] Исто така, каталитичките аминокиселински остатоци имаат тенденција да се појават во ист редослед во белковинските низи.[15] Семејствата во рамките на PA кланот на протеази имаат сличен механизам на ковалентна, нуклеофилна катализа на белковини, пептиди или аминокиселини, иако покажуваат дивергентна еволуција на остатоците од каталитичката тријада.[16] Сепак, механизмот сам по себе не е доволен за да се докаже сродство. Некои каталитички механизми имаат еволуирано независно едни од други по конвергентен пат, па затоа формираат посебни натсемејства,[17][18][19] а во некои натсемејства може да се сретне спектар на различни (иако често хемиски слични) механизми.[14][20]
Белковинските натсемејства ја претставуваат моменталната граница на нашата способност за идентификување на заедничко потекло кај белковините.[21] Тие се моментално најголемото можно еволутивно групирање добиено врз основа на директни докази. Некои натсемејства имаат членови кои се присутни во сите царства на животот, што укажува на тоа дека последниот заеднички предок на тоа натсемејство бил присутен во последниот универзален заеднички предок на сите живи организми (LUCA, од анг. Last Universal Common Ancestor).[22]
Членови на едно натсемејство може да се најдат во различни видови кои имаат заедничко потекло, т.е. заеднички предок (ортологија). Спротивно на тоа, тие може да се најдат во рамките на истиот вид, а еволуирале од една иста белковина чијшто ген подлегнал на генска дупликација (паралогија).
Повеќето белковини содржат повеќе домени во својата структура. Меѓу 66-80% од сите еукариотски белковини имаат повеќе домени, а 40-60% од сите прокариотски белковини имаат повеќе домени.[5] Со текот на времето, многу од натсемејствата на домени се имаат искомбинирано меѓусебе во структурите на повеќедоменските белковини. Всушност, многу ретко се среќаваат т.н. „доследно изолирани натсемејства“.[5] Кога домените се комбинираат, N- до C-терминалниот редослед во доменот („доменска архитектура“) најчесто добро е сочувана. Дополнително, бројот на комбинации на домени кои се среќаваат во природата е многу помал во споредба со бројот на можните комбинации, што укажува на тоа дека можните комбинации подлегнуваат на процесот на селекција.[5]
Имуноглобулинско натсемејство - Членовите на ова натсемејство споделуваат структура на сендвич од две бета плочи со антипаралелни бета нишки (Ig-склоп), а имаат улога на препознавање, врзување, и адхезија.[29][30]
PA клан - Членовите на оваа натсемејство споделуваат структура слична на химотрипсин и слични механизми на протеолиза, иако имаат низна сличност <10%. Овој клан ги содржи цистеинските и серинските протеази.[2][31]
Ras натсемејство - Членовите на ова натсемејство споделуваат ист каталитички G домен на β-плоча од 6 β-нишки опкружена со 5 α-завојници.[32]
Серпинско натсемејство - Членовите на ова натсемејство споделуваат високоенергетски, нестабилен склоп кој може да подлегне на голема конформациона промена, која служи за инхибиција на цистеинските и серинските протеази со нарушување на нивната структура.[9]
Натсемејство на TIM цилиндар - Членовите на ова натсемејство споделуваат голем α8β8 цилиндар. Тој е еден од најчестите белковински склопови.[33][34]
↑„Sequence evolution correlates with structural dynamics“. Molecular Biology and Evolution. 29 (9): 2253–63. September 2012. doi:10.1093/molbev/mss097. PMID22427707.
↑ 9,09,1„The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature“. The Journal of Biological Chemistry. 276 (36): 33293–6. September 2001. doi:10.1074/jbc.R100016200. PMID11435447.
↑„Evolution of primate α and θ defensins revealed by analysis of genomes“. Molecular Biology Reports. 41 (6): 3859–66. June 2014. doi:10.1007/s11033-014-3253-z. PMID24557891.
↑„Causes of evolutionary rate variation among protein sites“. Nature Reviews. Genetics (англиски). 17 (2): 109–21. February 2016. doi:10.1038/nrg.2015.18. PMID26781812.
↑„An evolving hierarchical family classification for glycosyltransferases“. Journal of Molecular Biology. 328 (2): 307–17. April 2003. doi:10.1016/S0022-2836(03)00307-3. PMID12691742.
↑„Independent evolution of four heme peroxidase superfamilies“. Archives of Biochemistry and Biophysics. 574: 108–19. May 2015. doi:10.1016/j.abb.2014.12.025. PMID25575902.
↑Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E.; Barber, Alan E.; Custer, Ashley F.; Hicks, Michael A.; Huang, Conrad C.; Lauck, Florian; Mashiyama, Susan T. (2013-11-23). „The Structure–Function Linkage Database“. Nucleic Acids Research (англиски). 42 (D1): D521–D530. doi:10.1093/nar/gkt1130. ISSN0305-1048.
↑„Protein superfamily evolution and the last universal common ancestor (LUCA)“. Journal of Molecular Evolution. 63 (4): 513–25. October 2006. doi:10.1007/s00239-005-0289-7. PMID17021929.
↑„Alpha/beta hydrolase fold: an update“. Protein and Peptide Letters. 16 (10): 1137–48. 2009. PMID19508187.
↑„Alpha/beta hydrolase fold enzymes: the family keeps growing“. Current Opinion in Structural Biology. 9 (6): 732–7. December 1999. doi:10.1016/S0959-440X(99)00037-8. PMID10607665.
↑„SCOP“. Архивирано од изворникот на 2014-07-29. Посетено на 28 May 2014.
↑„Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer“. Biochimica et Biophysica Acta. 1834 (1): 417–24. January 2013. doi:10.1016/j.bbapap.2012.07.015. PMID22885024.
↑Branden C, Tooze J (1999). Introduction to protein structure (2. изд.). New York: Garland Pub. ISBN978-0815323051.
↑„Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution“. Journal of Molecular Biology. 205 (3): 529–44. February 1989. doi:10.1016/0022-2836(89)90224-6. PMID2926816.
↑„The immunoglobulin fold. Structural classification, sequence patterns and common core“. Journal of Molecular Biology. 242 (4): 309–20. September 1994. doi:10.1006/jmbi.1994.1582. PMID7932691.
↑„One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions“. Journal of Molecular Biology. 321 (5): 741–65. August 2002. doi:10.1016/s0022-2836(02)00649-6. PMID12206759.
↑„An α/β-barrel full of evolutionary trouble“. Current Opinion in Structural Biology. 3 (3): 409–412. 1993. doi:10.1016/S0959-440X(05)80114-9.