ഹൃദയപേശികൾക്ക് താളാത്മകമായി പ്രവർത്തിക്കുവാൻ ആവശ്യമായ പ്രേരണ ചെലുത്തുന്ന ആവേഗങ്ങൾ ഹൃദയഭിത്തിയിലെ രൂപമാറ്റം സംഭവിച്ച പേശികളിൽ നിന്നാണ് ഉദ്ഭവിക്കുന്നത്. ഈ ഭാഗമാണ് ഹൃദയത്തിന്റെ പേസ്മേക്കർ എന്നറിയപ്പെടുന്നത്. മയോകാർഡിയം എന്ന ഹൃദയപേശീഭാഗങ്ങളിലെ ചില കാർഡിയോമയോസൈറ്റ് കോശങ്ങൾ ഉത്പാദിപ്പിക്കുന്ന ആക്ഷൻ പൊട്ടൻഷ്യൽ എന്ന വൈദ്യുതആവേഗമാണ് ഹൃദയപ്രവർത്തനത്തിനാധാരം.[1] ഇവയുടെ വൈകല്യം ഹൃദയപ്രവർത്തനങ്ങളെ താളം തെറ്റിക്കുമെന്നതിനാൽ ഇവയുടെ ആരോഗ്യസംരക്ഷണവും തകരാറിലായ പേസ്മേക്കറിന്റെ പരിഹരണവും പ്രാധാന്യമർഹിക്കുന്നു. മിക്ക രോഗികളിലും തകരാറുകൾ പരിഹരിക്കുന്നതിന് പേസ്മേക്കറുകൾ സ്ഥാപിക്കാറുണ്ട്.[2]വിൽസൺ ഗ്രേയ്റ്റ്ബാച്ച് ആണ് കൃത്രിമ പേസ്മേക്കറിന്റെ പിതാവ് എന്നറിയപ്പെടുന്നത്.[3]
ഹൃദയത്തിന്റെ താളാത്മകമായ പ്രവർത്തനത്തിന് കാർഡിയാക് കണ്ടക്ഷൻ സിസ്റ്റം എന്നുപേരുള്ള, രൂപമാറ്റം സംഭവിച്ച ഹൃദയപേശീഭാഗങ്ങൾ സഹായിക്കുന്നു. താളാത്മകമായി വൈദ്യുത രാസ ആവേഗങ്ങൾ പുറപ്പെടുവിക്കാൻ കഴിവുള്ള ഈ പേശീഭാഗങ്ങളിൽ നിന്നും ആവേഗങ്ങളെ വെൻട്രിക്കിളുകൾ വരെ എത്തിക്കുന്നതിന് പ്രത്യക കൈമാറ്റസംവിധാനമുണ്ട്. കാർഡിയാക് കണ്ടക്ഷൻ വ്യവസ്ഥയുടെ പ്രധാന ഭാഗങ്ങൾ ഇവയാണ്.
3 മി.മീറ്റർ വീതിയും 15മി.മീറ്റർ നീളവും ഒരു മില്ലീമീറ്റർ കനവുമുള്ള, പരന്ന, എലിപ്സിന്റെ ആകൃതിയുള്ള ഹൃദയപേശീഭാഗമാണിത്. വലത്തേ ഏട്രിയത്തിന്റെ(വലത്തേ ആറിക്കിൾ)പിൻമുകളിൽ വശത്തായി, ഊർദ്ധ്വമഹാസിര(സുപ്പീരിയർ വീനക്കാവ)യുടെ വെൻട്രിക്കിളിലേയ്ക്കുള്ള തുറക്കൽസുഷിരത്തിനടുത്താണ് ഇവയുടെ സ്ഥാനം. ഇവിടെയുള്ള പേശീതന്തുക്കൾക്ക്(ഹൃദയപേശീകോശങ്ങൾ) സ്വയം സങ്കോചശേഷി കാണിക്കുന്ന തന്തുക്കളില്ല. ഓരോ പേശീതന്തുവും 3 മുതൽ 5 മൈക്രോ മീറ്റർ വരെ മാത്രം വ്യസമുള്ളവയാണ്. എസ്.ഏ.നോഡിലെ തന്തുക്കളോരോന്നും ഏട്രിയത്തിന്റെ പേശീതന്തുക്കളുമായി സമ്പർക്കത്തിലിരിക്കുന്നതിനാൽ എസ്.ഏ.നോഡിലുണ്ടാകുന്ന വൈദ്യുത ആവേഗങ്ങൾ എളുപ്പത്തിൽ ഏട്രിയത്തിലേയ്ക്കും വ്യാപിക്കുന്നു. വലത്തേ വാഗസ് നാഡിയാണ് എസ്.ഏ.നോഡിനെ നാഡീയമായി നിയന്ത്രിക്കുന്നത്.
എസ്.ഏ. നോഡിൽ ചെറിയ ഗോളാകൃതിയിലുള്ള, വളരെക്കുറച്ചുമാത്രം കോശാംഗങ്ങളുള്ള P കോശങ്ങൾ കാണപ്പെടുന്നു. എസ്.ഏ.നോഡിന്റെ പേസ്മേക്കർ എന്നാണ് ഇവ അറിയപ്പെടുന്നത്. അവശേഷിക്കുന്ന കോശങ്ങളെ T കോശങ്ങൾ അഥവാ ട്രാൻസിഷണൽ കോശങ്ങൾ എന്നുവിളിക്കുന്നു. P കോശങ്ങൾക്ക് സ്വയം താളാത്മകമായി ഉത്തേജിപ്പിക്കപ്പെടാനും തുടർച്ചയായി ആക്ഷൻ പൊട്ടൻഷ്യൽ (നാഡീയ ആവേഗം)പുറപ്പെടുവിക്കാനും കഴിവുണ്ട്. കണ്ടക്ഷൻ സിസ്റ്റത്തിലെ എല്ലാ ഭാഗങ്ങൾക്കും ആവേഗങ്ങൾ സൃഷ്ടിക്കാൻ കഴിവുണ്ടെങ്കിലും എസ്.ഏ.നോഡിനാണ് വളരെ എളുപ്പത്തിൽ ആവേഗോത്പാദനം നടത്താൻ കഴിവുള്ളത്. അതിനാൽ എസ്.ഏ നോഡിനെ ഹൃദയത്തിന്റെ പേസ്മേക്കർ എന്നുവിളിക്കുന്നു. സിക്ക് സൈനസ് സിൻഡ്രോം പോലെയുള്ള വൈകല്യങ്ങളിൽ എസ്.ഏ.നോഡ് പ്രവർത്തന രഹിതമാകുന്നു. എസ്.ഏ.നോഡ് ഒഴികെയുള്ള ഭാഗങ്ങൾ എസ്.ഏ നോഡുപോലെ ആവേഗങ്ങൾ പുറപ്പെടുവിക്കാൻ തുടങ്ങുന്നതാണിതിന് കാരണം.
എസ്.ഏ നോഡും ഏട്രിയവും പരസ്പരം സമ്പർക്കത്തിലായതിനാൽ എസ്.ഏ.നോഡിലുണ്ടാകുന്ന ആവേഗങ്ങൾ വളരെയെളുപ്പം ഏട്രിയത്തിന്റെ ഭിത്തിയിലേയ്ക്ക് വ്യാപിക്കുന്നു. എന്നാൽ ചില ഏട്രിയൽ തന്തുസമുച്ചയങ്ങളിൽ ആവേഗകൈമാറ്റം അല്പം കൂടി എളുപ്പത്തിൽ നടക്കുന്നു. ഏട്രിയൽ പേശികളിൽ ഒരു സെക്കൻഡിൽ 0.3 മീറ്ററാണ് ആവേഗവേഗതയെങ്കിൽ അവയിലെ മുൻപരാമർശിച്ച തന്തുസമുച്ചയങ്ങളിൽ സെക്കൻഡിൽ 1 മീറ്റർ ആണ് സഞ്ചാരവേഗത. ഇതിലെ ആന്റീരിയർ ഇന്റർ ഏട്രിയൽ ബാൻഡ് എന്ന തന്തുസമുച്ചയം വലത്തേ ഏട്രിയം കടന്ന് ഇടത്തേ ഏട്രിയത്തിലേയ്ക്കെത്തുന്നു. ഇതിനൊപ്പം മറ്റുമൂന്ന് ചെറിയ തന്തുസമുച്ചയങ്ങളും ഏട്രിയത്തിന്റെ മുകളിൽ നിന്നും താഴഎനിന്നും വശത്തുനിന്നും ഇതിനോട് കൂടിച്ചേരുന്നു. ഇവയെ യഥാക്രമം ആന്റീരിയർ ഇന്റർനോഡൽ ട്രാകട് ഓഫ് ബാക്ക്മാൻ(Bachman), മിഡിൽ ഇന്റർനോഡൽ ട്രാകട് ഓഫ് വെങ്കെബാക്ക്(Wenckebach), പോസ്റ്റീരിയർ ഇന്റർനോഡൽ ട്രാകട് ഓഫ് തോറൽ(Thorel)എന്നിങ്ങനെ വിളിക്കുന്നു.
വലത്തേ ഏട്രിയത്തിന്റെ പിൻഭിത്തിയിൽ ത്രിദളവാൽവിന് തൊട്ടുപിന്നിലായി കാണപ്പെടുന്ന ഭാഗമാണിത്. ഇടത്തേ വാഗസ് നാഡി ഇതിലേയ്ക്ക് വന്നുചേരുന്നു. എസ്.ഏ. നോഡിന്റെ ഘടന തന്നെയാണിതിനെങ്കിലും P കോശങ്ങളുടെ എണ്ണത്തിൽ കുറവുണ്ട്. ഏട്രിയങ്ങളും വെൻട്രിക്കിളുകളും ഏട്രിയോ വെൻട്രിക്കുലാർ ഭിത്തിമൂലം പരസ്പരം വേർതിരിയപ്പെട്ടിട്ടുള്ളതിനാൽ ഏട്രിയത്തിനും വെൻട്രിക്കിളുകൾക്കുമിടയിൽ ആവേഗസഞ്ചാരത്തിനുള്ള ഒരേയൊരു മാർഗ്ഗമാണ് ഏ.വി.നോഡും ബണ്ടിൽ ഓഫ് ഹിസും. ഏ.വി.നോഡിലെത്തുന്ന ആവേഗങ്ങൾ 0.08 മുതൽ 0.1 സെക്കൻഡുകൾ അവിടെ താമസിച്ച ശേഷമാണ് ബണ്ടിൽ ഓഫ് ഹിസിലേയ്ക്ക് അയയ്ക്കപ്പെടുന്നത്.(AV നോഡൽ ഡിലേ). ഇത് ഏട്രിയത്തിലെ മുഴുവൻ രക്തവും വെൻട്രിക്കിളുകളിലേയ്ക്കൊഴുകുന്നത് ഉറപ്പുവരുത്തുന്നു. കുറഞ്ഞ സംവഹനപ്രവേഗവും കനക്കുറവുള്ള തന്തുക്കളും ബഹുശാഖാസ്വഭാവവും സമീപസ്ഥകോശങ്ങൾക്കിടയ്ക്ക് ചുരുക്കം ഗ്യാപ്പ് ജങ്ഷനുകൾ മാത്രമുള്ളതും ഇതിന് കാരണമാകുന്നു.
ഏ.വി നോഡ് 20 മില്ലി മീറ്ററോളം നീളമുള്ള ബണ്ടിൽ ഓഫ് ഹിസ്(Bundle of His) എന്ന ഭാഗവുമായി സമ്പർക്കത്തിലെത്തുന്നു. ഏ.വി നോഡിന്റെ വെൻട്രിക്കുലാർ ഉപരിതലത്തിൽ നിന്നാണ് ഇവ രൂപപ്പെടുന്നത്. ഇന്റർവെൻട്രിക്കുലാർ സെപ്റ്റത്തിന്റെ വലത്ത് അതിരിലേയ്ക്ക് അല്പദൂരം കടന്ന ശേഷം ഇത് ഇടത് ബണ്ടിൽ ശാഖയും (left bundle branch) വലത് ബണ്ടിൽ ശാഖയുമായി വേർപിരിയുന്നു. ഇടതു ശാഖ പിന്നീട് ആന്റീരിയർ ഫസിക്കിൾ ആയും പോസ്റ്റീരിയർ ഫസിക്കിൾ ആയും പിരിയുന്നു. ഇടതുവെൻട്രിക്കിളിന്റെ മുകൾ ഭാഗത്തേയ്ക്കും ഇന്റർവെൽട്രിക്കുലാർ സെപ്റ്റ(ഭിത്തി)ത്തിന്റെ ഇടതുമുകൾ ഭാഗത്തേയ്ക്കും ആന്റീരിയർ ഫസിക്കിൾ ആവേഗങ്ങളെ പായിക്കുന്നു. ഇടതുവെൻട്രിക്കിളിന്റെ മുൻ ഭാഗത്തേയ്ക്കും താഴ് ഭാഗത്തേയ്ക്കും ഇന്റർവെൽട്രിക്കുലാർ സെപ്റ്റ(ഭിത്തി)ത്തിന്റെ ഇടതുതാഴ് ഭാഗത്തേയ്ക്കും പോസ്റ്റീരിയർ ഫസിക്കിൾ ആവേഗങ്ങളെ പായിക്കുന്നു. ആവേഗങ്ങൾക്ക് ഏ.വി. ബണ്ടിലിലൂടെ ഏകദീശാസഞ്ചരണമേ ഉള്ളൂ.
ഏ.വി. ബണ്ടിലിന്റെ അഗ്രം
പേസ് മേക്കർ കോശങ്ങളിൽ ഹൃദയമിടിപ്പിനാവശ്യമായ ആവേഗം ഉണ്ടാകുന്നത് മൂന്നു ഘട്ടങ്ങളായാണ്. ഹൃദയപേശികളുടെ സങ്കോചത്തിന്റെ ഘട്ടങ്ങളുടെ പേരുകൾ തന്നെയാണ് പേസ് മേക്കറിൽ അതേ സമയത്തുണ്ടാകുന്ന പ്രവർത്തനത്തിനും നൽകിയിരിക്കുന്നത്. ഇതുകാരണം ചില ആശയക്കുഴപ്പങ്ങൾ ഉണ്ടായേക്കാം. ഒന്നാം ഘട്ടമെന്നും രണ്ടാം ഘട്ടമെന്നുമുള്ള പേരുകൾ നൽകുന്നതിനു പകരം പൂജ്യം, മൂന്ന്, നാല് എന്നിങ്ങനെയാണ് പേരുകൾ നൽകിയിരിക്കുന്നത്.
പേസ് മേക്കറിലെ കോശങ്ങളിൽ തനിയെ ഡീപോളറൈസേഷൻ നടക്കുമെന്നതാണ് ഇവയെ വൈദ്യുത പൊട്ടൻഷ്യലുള്ള കോശങ്ങളായ പേശീകോശങ്ങളിൽ നിന്നും നാഡീ കോശങ്ങളിൽ നിന്നും വ്യത്യസ്തമാക്കുന്നത്.
പേസ് മേക്കർ കോശസ്തരത്തിനു കുറുകേയുള്ള വിശ്രമ വൈദ്യുത പൊട്ടൻഷ്യൽ (റേസ്റ്റിംഗ് മെംബ്രേൻ പൊട്ടൻഷ്യൽ) -60mV മുതൽ -70mV വരെയാണ്. സാധാരണ കോശങ്ങളിൽ ഈ പൊട്ടൻഷ്യൽ നിലനിൽക്കുന്നത് പോസിറ്റീവ് ചാർജുള്ള പൊട്ടാസ്യം അയോണുകൾ സ്ഥിരമായി പുറത്തേയ്ക്ക് തള്ളപ്പെടുന്നതുകൊണ്ടാണ്. കോശസ്തരത്തിനു കുറുകേ നിലകൊള്ളുന്ന പ്രത്യേക മാംസ്യതന്മാത്രകളിലൂടെയാണ് എല്ലാ കോശങ്ങളിലെയും പൊട്ടാസ്യം അയോണുകൾ കോശത്തിനു പുറത്തേയ്ക്കൊഴുകുന്നത്. പേസ് മേക്കർ കോശങ്ങളുടെ പ്രത്യേകത സമയം (മില്ലി സെക്കന്റുകൾ) ചെല്ലുന്തോറും പൊട്ടാസ്യത്തിന്റെ ഒഴുക്ക് കുറഞ്ഞുവരുമെന്നതാണ്. ഈ ഒഴുക്കു കുറവും സോഡിയത്തിന്റെയും കാൽസ്യത്തിന്റെയും അയോണുകളുടെ കോശത്തിനുള്ളിലേയ്ക്കുള്ള പ്രവാഹവും മെംബ്രേൻ പൊട്ടൻഷ്യൽ -70mV യിൽ നിന്ന് ഉയർത്തും (കോശത്തിന്റെ നെഗറ്റീവ് വൈദ്യുത ചാർജ് ചാർജ് കുറയും; അതായത് കോശം കൂടുതൽ പോസിറ്റീവ് ചാർജുള്ളതാകും).
ഈ പ്രക്രീയ മൂലം വൈദ്യുത ചാർജ് -40mV മുതൽ -50mV വരെയാകുമ്പോൾ പേസ് മേക്കർ കോശം പടിപ്പുര പൊട്ടൻഷ്യലിൽ എത്തും (threshold potential). ഇതിനു ശേഷം കോശം അടുത്ത ഘട്ടത്തിലേയ്ക്ക് (ഫേസ് - 0) കടക്കുകയായി.
ത്രെഷോൾഡ് പൊട്ടൻഷ്യൽ എത്തിക്കഴിഞ്ഞാൽ ഹൃദയത്തിലെ പേസ് മേക്കർ കോശസ്തരത്തിലെ കാൽസ്യം അയോണുകളെ കടത്തിവിടുന്ന മാംസ്യങ്ങൾ (ടി. ടൈപ്പ് കാൽസ്യം ചാനലുകൾ) തുറന്ന് കോശങ്ങൾക്കുള്ളിലേയ്ക്ക് കാൽസ്യം അയോണുകൾ ഫേസ് - 4നെ അപേക്ഷിച്ച് വേഗത്തിൽ പ്രവഹിക്കാൻ തുടങ്ങും. ഇതുകൊണ്ട് കോശത്തിന്റെ നെഗറ്റീവ് വൈദ്യുത ചാർജ് ചാർജ് കുറയുന്ന പ്രക്രീയയുടെ വേഗം കൂടുകയും ചാർജ് +10mV വരെയെത്തുകയും ചെയ്യും. ഈ ഘട്ടമാണ് ഹൃദയപേശികളിലേയ്ക്ക് സങ്കോചത്തിനായുള്ള വൈദ്യുതാവേഗം (ആക്ഷൻ പൊട്ടൻഷ്യൽ) അയയ്ക്കുന്നത്. ഇതിനു ശേഷം അടുത്ത ഘട്ടത്തിലേയ്ക്ക് പേസ് മേക്കർ കോശം കടക്കും.
ഈ ഘട്ടത്തിൽ കോശത്തിനുള്ളിലേയ്ക്ക് കാൽസ്യം അയോണുകൾ കടക്കുന്ന ചാനലുകൾ അടയും. സോഡിയം അയോണുകൾ കടക്കുന്നതിലും കുറവുണ്ടാകും. ഈ രണ്ട് പോസിറ്റീവ് അയോണുകളും കോശത്തിനുള്ളിലേയ്ക്ക് കടക്കുന്നത് കുറയുന്നതോടെ കോശത്തിലെ പോസിറ്റീവ് ചാർജിന്റെ വർദ്ധന നിലയ്ക്കും. ഇതോടൊപ്പം തന്നെ പൊട്ടാസ്യം അയോണിനെ പുറത്തേയ്ക്ക് തള്ളുന്നതിന്റെ വേഗം കൂടും. ഈ പോസിറ്റീവ് ചാർജുള്ള അയോണുകൾ കോശത്തിൽ നിന്ന് പുറംതള്ളപ്പെടുന്നതോടെ ക്രമേണ കോശസ്തരത്തിനു കുറുകേയുള്ള വൈദ്യുത പൊട്ടൻഷ്യൽ -60mV മുതൽ -70mV വരെയെത്തും. ഇതാണ് റെസ്റ്റിംഗ് മെംബ്രേൻ പൊട്ടൻഷ്യൽ. ഇതിനു ശേഷം ഫേസ് 4 വീണ്ടും തുടങ്ങും.
ഹൃദയത്തിൽ ഘടിപ്പിച്ച ഇലക്ട്രോഡുകൾ വഴി കൃത്യമായ ഇടവേളകളിൽ വൈദ്യുത ആവേഗങ്ങൾ എത്തിച്ച് ഹൃദയമിടിപ്പിന്റെ താളം നിയന്ത്രിക്കാൻ വൈദ്യശാസ്ത്രത്തിൽ ഉപയോഗിക്കുന്ന യന്ത്രമാണ് കൃത്രിമ പേസ് മേക്കർ. സൈനോ ഏട്രിയൽ നോഡ് എന്ന പ്രകൃതിദത്ത പേസ് മേക്കറിന്റെ വേഗം കുറയുമ്പോഴോ ഹൃദയത്തിലെ ആവേഗ പ്രസരണ വ്യവസ്ഥയിൽ എന്തെങ്കിലും തടസ്സമുണ്ടാകുമ്പോഴോ ആണ് കൃത്രിമ പേസ് മേക്കറിന്റെ ആവശ്യം വരുന്നത്. സാധാരണഗതിയിൽ യന്ത്രത്തിന്റെ പ്രധാന ഭാഗം ശരീരത്തിനു വെളിയിൽ ഘടിപ്പിക്കാവുന്നതാണ്. ഓരോ വ്യക്തിക്കും വേണ്ട ഹൃദയതാളം മനസ്സിലാക്കി അതനുസരിച്ച് പ്രോഗ്രാം ചെയ്യാവുന്നവയാണ് ആധുനിക പേസ് മേക്കറുകൾ.