Een brownse brug is een speciaal stochastisch proces dat wordt voortgebracht door een brownse beweging (ook Wienerproces genoemd). In tegenstelling daarmee heeft een brownse brug een eindige tijdshorizon met een deterministische (niet toevallige) eindwaarde, die gewoonlijk gelijk is aan de beginwaarde. De brownse brug wordt toegepast om toevallige ontwikkelingen te modelleren in data waarvan de waarde op twee tijdstippen bekend is.
Zij een standaard Wienerproces en een vast gekozen tijdstip, dan heet het proces:
Brownse brug met lengte .
Het enige verschil is dat als voorwaarde geldt dat op tijdstip weer nul wordt. De kansverdeling van is dus op elk moment gegeven door de voorwaardelijke kans:
.
In het bijzonder geldt natuurlijk dat . Vandaar de naam van het proces: Er wordt een brug geslagen tussen 0 en waar men vervolgens weer "vaste grond onder de voeten" heeft.