Przybliżenie RPA

Przybliżenie RPA, funkcja dielektryczna Linharda, RPA (z ang. Random Phase Approximation – przybliżenie przypadkowych faz) to przybliżona modelowa funkcja dielektryczna obliczana w reżimie liniowej odpowiedzi układu.

W przybliżeniu RPA możemy modelować statyczną (niezależną od czasu) bądź dynamiczną (zależną od czasu) funkcję dielektryczną. Ze względu na to, że obliczenia wykonuje się w przestrzeni odwrotnej (po wykonaniu transformat Fouriera) mówimy o

  • dla funkcji statycznej,
  • dla funkcji dynamicznej.

Przybliżenie RPA polega na zastąpieniu funkcji polaryzacji (operatora polaryzaji) przybliżeniem

gdzie oznacza transformatę Fouriera potencjału oddziaływania elektrycznego cząstka-cząstka, natomiast indeks górny (1) w operatorze polaryzacji oznacza pierwszy wyraz w rozwinięciu funkcji polaryzacji.

Związek RPA i PPA

[edytuj | edytuj kod]

Przybliżenie RPA jest używane do obliczenia funkcji dielektrycznej w przybliżeniu PPA przybliżając funkcję przez jej najbardziej dominujący czynnik odpowiedzialny za kwazicząstkowe wzbudzenia plazmonowe.

Przybliżenie RPA w języku diagramów Feynmana

[edytuj | edytuj kod]
Jednopętlowy diagram Feynmana wykorzystywany w przybliżeniu RPA

Przybliżenie RPA ma charakter perturbacyjny i może zostać wyrażone w języku diagramów Feynmana. W rozwinięciu funkcji polaryzacji sumuje się jednopętlowe diagramy Feynmana – mówi się też czasem o ekranowanym (lub żargonowo ubranym w odróżnieniu od gołego – od ang. bare) oddziaływaniu. Ekranowane oddziaływanie bywa też oznaczane przez podwójną falistą linię.

Zobacz też

[edytuj | edytuj kod]

Bibliografia

[edytuj | edytuj kod]
  • H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786 (1959).
  • J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28, 8 (1954).
  • N.W. Ashcroft and N. D. Mermin, Solid State Physics (Thomson Learning, Toronto, 1976).
  • G.D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990).