System barw Ostwalda – metoda klasyfikacji barw, zaproponowana przez Wilhelma Ostwalda, oparta na założeniu, że każda z barw może być wyrażona funkcją udziałów trzech składowych – jednej z 24 „barw pełnych” (w pełni nasyconych barw chromatycznych) oraz dwóch barw achromatycznych – bieli i czerni. Ostwald – chemik i filozof – korzystał z zaproponowanej klasyfikacji poszukując możliwości opisania warunków osiągania harmonii barw, np. w malarstwie.
Współcześnie jest oczywiste, że teoria kolorów musi opierać się na uznaniu ich za wrażenia wywołane działaniem różnych bodźców świetlnych na narządy wzroku. Narządy takie ukształtowały się w procesie ewolucji organizmów, nieustannie dostosowujących się do życia na Ziemi – m.in. ewolucyjnie doskonalących sposoby korzystania z docierającej przez atmosferę części widma promieniowania słonecznego jako źródła informacji o otoczeniu (zob. ewolucja widzenia barwnego). Na podstawie wiedzy o prawdopodobnym składzie widma tego promieniowania w czasie rozwoju pierwszych form życia przypuszcza się, że pierwotne organizmy dysponowały receptorami światła o zakresach czułości innych niż te, którymi dysponuje człowiek[a]. Człowiek współczesny opisuje własne wrażenia wzrokowe, do nich dostosowując znaczenie pojęć światło widzialne, widzenie fotopowe lub barwa, od dawna nie zadając sobie pytań:
Światło miałoby istnieć tylko wtedy, gdy jest widziane?
Nie! To ty nie mógłbyś istnieć, gdyby światło nie widziało ciebie![2]
Od połowy XIX wieku do opisu wrażeń odbieranych przez człowieka używa się wielkości[3]:
które są podstawą różnych – wciąż udoskonalanych – systemów barw[4] (zob. np. Natural Colour System, przestrzeń barw, przestrzeń barw L,a,b, CIELab, modele: HSV, HSL, RGB, RGBA, sRGB i inne).
Opisywane wrażenia wzrokowe nie są jednoznacznie związane ze składem widma promieniowania, które jest fizjologicznym bodźcem[3]:
Historia rozważań o istocie barw i ich oddziaływaniu na człowieka (aspekty filozoficzne, metafizyczne, estetyczne, psychologiczne, przyrodnicze) jest znacznie dłuższa od historii badań właściwości promieniowania elektromagnetycznego. W starożytności i średniowieczu rozważania te, w tym tworzenie systemów barw (sposobów klasyfikacji opartych m.in. na pojęciach „jasności” i „ciemności” barw), podejmowali głównie filozofowie i malarze (m.in. Pitagoras, Arystoteles, Platon, Robert Grosseteste, Leone Battista Alberti, Leonardo da Vinci); nie były one oparte na podstawach przyrodniczych[4][5]. Demokryt twierdził, że obserwowane obiekty wysyłają do oka „atomy”, wywołujące obraz; według Euklidesa to właśnie oko miało być źródłem „promieni wzrokowych”, które „dotykały” obserwowanych przedmiotów[6]. Pierwszym uczonym, który stworzył system oparty na tylko trzech barwach – czerwonej, niebieskiej i żółtej – był prawdopodobnie belgijski uczony i jezuita François d'Aguilon (1567–1617)[7].
Przełomem w poznawaniu natury barwy było odkrycie Isaaca Newtona (1643–1727), dokonane w czasie jego badań rozszczepiania światła białego w pryzmacie i proces odwrotny (zastosowanie drugiego pryzmatu)[8][9].
Newton pierwszy stwierdził, że uzyskiwane barwy nie są cechą pryzmatów, lecz światła, które można rozdzielać i ponownie łączyć, uzyskując światło białe. Zaproponował koło barw, którego wycinki odpowiadają udziałom siedmiu kolorów w widmie (czerwona, pomarańczowa, zielona, niebieska, indygo, fioletowa) i wskazał punkt odpowiadający światłu białemu. Wyniki swojej pracy przedstawił w Royal Society w roku 1672 jako a new theory of light and colours[8][9]. W kolejnych dziesięcioleciach koncepcja spotykała się ze sprzeciwami; protestował m.in. Johann Wolfgang von Goethe (1749–1832), zajmujący się problemami barw od roku 1791, którego praca Theory of Colours ukazała się w roku 1810[10]. Goethe wyśmiewał możliwość uzyskiwania bieli z barw chromatycznych, myśląc wyłącznie o syntezie subtraktywnej, czyli efektach odbicia światła od powierzchni pokrytych mieszaninami barwników, pochłaniających fale o różnej długości (sumowanie efektów absorpcji powoduje wzrost udziału czerni – nasycenia szarością). Różnica między syntezą subtraktywną i addytywną (mieszaniem wiązek światła o różnych widmach, powodującym zwiększanie udziału bieli) stała się wkrótce oczywista[11], m.in. dzięki pracom niemieckiego matematyka i astronoma, Tobiasa Mayera, autora pracy De Affi nitate Colorum Commentatio (1758) i Georga Palmera, autora książki Theory of Colours and Vision (1777)[12].
Zrozumienie powstawania wrażeń barw nie byłoby możliwe bez rozwoju medycyny. Istotny wkład wnieśli m.in.[13][14][15]:
Trójchromatyczną teorię Younga–Helmholtza potwierdził James Clerk Maxwell (zob. trójkąt Maxwella), autor m.in. Experiments on Colours (1855) i On the Theory of compound Colours (1860). Badania mieszania promieniowania różnych barw widmowych prowadził również Hermann Grassmann (1809–1877) – nauczyciel matematyki i fizyki z gimnazjum w Szczecinie (polihistor). Uzyskał wyniki pozwalające sformułować prawa addytywnego mieszania, które przedstawił w pracy wydanej w roku 1853 pt. Zur Theorie der Farbmischung (o teorii mieszania barw). „Prawa Grassmanna” są podstawą współczesnej kolorymetrii[12].
Wiedza o barwach, zgromadzona od odkrycia Newtona, stała się podstawą systemów ich klasyfikacji, traktujących barwy o różnej charakterystyce jako mieszaniny innych barw. Stworzyli je m.in.[18] malarze Philipp Otto Runge (1777–1810)[19] i Albert Henry Munsell (1858–1918)[20][21] oraz fizykochemik i filozof przyrody – Wilhelm Ostwald (1853–1932)[22][23][21].
Wilhelm Ostwald, laureat Nagrody Nobla w dziedzinie chemii w roku 1909 (afiliacja: Uniwersytet w Lipsku), fizykochemik zainteresowany filozofią przyrody i historią chemii, porzucił w roku 1906 pracę akademicką, podejmując w prywatnym laboratorium poszukiwania naukowych podstaw harmonii barw – próby sprecyzowania zasad ich łączenia w sposób analogiczny do łączenia akordów (harmonia dźwięków)[26], prowadzących do odczuwania piękna (analogicznie do odczuwania piękna muzyki lub poezji)[2][23][27][28]. Pracował nad wydaniem Nauki o barwach w pięciu tomach, poświęconych problemom matematycznym, fizycznym, chemicznym, fizjologicznym (tom napisany przez lekarza) i psychologicznym. Tom piąty nie ukazał się, lecz rozważania dotyczące psychologii zostały opublikowane, m.in. w pracach His Farbfibel (1916, 15 wydań) i Harmoniesucher[29].
Dążąc do naukowego rozwiązania problemów systematyki i harmonii barw W. Ostwald zgromadził liczne próbki barwników, które wytwarzał we własnym laboratorium[30]. Barwy usystematyzował inspirując się pracami amerykańskiego malarza, Alberta Munsella[20], z którym spotkał się w Ameryce w roku 1905.
W systemie Munsella barwę określano podając wartości trzech cech: odcienia H (od ang. Hue), nasycenia C (od ang. Chroma) i waloru V (od ang. Value), czyli stopnia jasności, wyrażanego jako miejsce na 10-stopniowej skali (1 – biel, 10 – czerń). System obejmuje 100 tonów barwy, umieszczonych na kole barw, wyrażonych jako pośrednie między R, Y, G, B od ang. Red, Yellow, Green, Blue, Purple (czerwony, żółty, zielony, niebieski, fioletowy)[21]. Wilhelm Ostwald zmodyfikował system Munsella umieszczając na kole 24 „barwy pełne” (chromatyczne oznaczone: N = 1, N = 2, …, N = 24). Zastosował „zasadę wzajemnej symetrii”, zgodnie z którą[31]:
Wprowadził też, jako dodatkowe „wielkości wrażenia barwnego” (parametry definiowanej przestrzeni barw), pojęcia udziału („zawartości”) dwóch barw achromatycznych: bieli i czerni. W ten sposób odszedł od kierunku wskazywanego przez Younga, Helmholtza i Maxwella (opis barw: ton, nasycenie, jasność)[32][23], co jest uznawane za jeden z jego merytorycznych błędów[33]. Ostwald był tak przekonany o słuszności swojej nowej teorii barw, że osobiście – wbrew zasadom – zgłaszał swoją pracę do wyróżnienia Nagrodą Nobla w dziedzinie fizyki[28]. Mimo zastrzeżeń dotyczących początkowych przesłanek teoretycznych system Ostwalda cieszył się powodzeniem w praktyce. Był m.in. prototypem opracowanego w latach późniejszych niemieckiego atlasu barw DIN Farbsystem DIN 6164[34].
Poglądowy model systemu Ostwalda ma formę podwójnego stożka. Jego przekrojami są 24 „trójkąty o jednakowym tonie barw”[35][36].
Wierzchołki trójkątów o jednakowym tonie zostały oznaczone symbolami: r – barwa czysta (pełna), b – biel, c – czerń. Boki trójkątów są traktowane jako[32]:
Zmiany wartości barw na skalach Ostwald wyznaczył kierując się „kryterium równego stopniowania interwału”, wynikającego z prawa Webera-Fechnera (subiektywnie odczuwana różnica między wrażeniami) jest zależna od siły (wielkości) bodźca w sposób logarytmiczny)[37]. W polu trójkątów linie prostopadłe odpowiadają tzw. „szeregom sczerniałym”, a punkty wewnątrz dwustożka, wyznaczonego przez b–r i c–r – „barwom mętnym” („zszarzałym”)[32].
Wnioski z badań dotyczących warunków odczuwania harmonii barw Ostwald przedstawił m.in. graficznie, jako „grupy harmonijne”[39].
Koncepcje te wywołały protesty artystów-malarzy. Praktycy wskazywali, że odczucie barw jako harmonijnych zależy od wielu dodatkowych czynników, poza uwzględnionymi w systemie, takich jak wielkość sąsiadujących barwnych powierzchni lub warunki w pomieszczeniach, w których dzieło jest prezentowane. Również Ostwald zdawał sobie sprawę z tych zależności, o czym świadczy cytat z jego pracy[39]:
Wygląda to na pustą ignorancję jeżeli komuś przyjdzie w ogóle na myśl, nby sprawy te chcieć opanować zimnym rozsądkiem