Kultura
Systemy wschodnioazjatyckie
Systemy alfabetyczne
Inne
Złoty system liczbowy – binarny, pozycyjny system liczbowy o podstawie złotej liczby .
Zapis liczby w tym systemie nie jest jednoznaczny. Złota liczba spełnia równanie φ² = φ + 1, co oznacza, że podobnie jak w systemie Fibonacciego dwie jedynki na kolejnych miejscach możemy zastąpić jedynką na miejscu wcześniejszym (…011…= …100…). Standardowo zapisuje się liczby w postaci „bez dwu kolejnych jedynek”.
korzystając z tego, że …0200…z = …1001…z znajdziemy zapis liczby 20d:
Spostrzeżenie: we wszystkich powyższych rachunkach korzystaliśmy tylko z tego, że ciąg …011… możemy zastąpić ciągiem …100… taka zamiana jest możliwa też w systemie o podstawie (1-√5)/2, bo ta liczba też jest pierwiastkiem równania x2 = x+1. Oznacza to, że dowolna liczba naturalna w systemie złotym i w systemie o podstawie (1-√5)/2 ma taki sam zapis (nie tyczy to wszystkich liczb). Liczba ta jest liczbą ujemną o module mniejszym niż 1, więc „prawie cała wartość” skupi się po przecinku na pozycjach parzystych. Wynika z tego, że wszystkie liczby naturalne większe niż 1 w zapisie w złotym systemie muszą mieć cyfry na parzystych miejscach po przecinku.
Liczbę 1 możemy zapisać w systemie dziesiętnym jako 0,9999999(9)d. W systemie złotym zachodzą równości 1z = 0,11z = 0,1011z = 0,101011z = 0,101010101011z itd., zatem liczbę 1 można zapisać jako 0,10 10 10 (10)z
0,010 010 010 (010)z + 0,010 010 010 (010)z = 0,020 020 020 (020)z = 0,011 120 020 020z = 0,100 120 020 (020)z = 0,101 010 020 020 (020)z = 0,101 010 011 120 (020)z = 0,101 010 100 120 (020)z = 0,101 010 101 010 (020)z = ... = 0,101 010 101 010 (101 010)z = 0,10 10 10 10 10 10 (10)z = 1.
Czyli 2*0,010 010 010 (010)z = 1, a to oznacza, że 1/2 = 0,010 010 010 (010)z.
Podobnie można pokazać, że: