O teorema de Gauss–Wantzel afirma que um polígono regular de lados é construtível com régua e compasso, se, e somente se, pode ser escrito como uma potência de 2 ou como o produto de uma potência de 2 por primos de Fermat distintos.[1] Isto é, se puder ser escrito de uma das duas formas:
↑Eliane Quelho Frota Rezende, Maria Lúcia Bontorim de Queiroz - Geometria Euclidiana Plana e Construções Geométricas, Editora Unicamp, 2ª Edição, pág. 168
Da esquerda para a direita, construções de 15-gono, 17-gono, 257-gono e 65537-gono. Apenas o primeiro estágio da construção do 65537-gonl é mostrado; as construções do 15-gonl, 17-gonl e 257-gonl são dadas completas.
Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.