Em matemática, um processo contínuo de Feller é um processo estocástico de tempo contínuo para o qual o valor esperado da estatística adequada do processo em um dado momento no futuro depende continuamente da condição inicial do processo. O conceito recebe este nome em homenagem ao matemático croata-americano William Feller.[1]
Considere um processo estocástico definido em um espaço de probabilidade . Para um ponto , considere que denota a lei de levando em conta o dado inicial e considere que denota a expectativa no que diz respeito a . Então, diz-se que é um processo contínuo de Feller se, para qualquer e qualquer função -mensurável, contínua e limitada , depende continuamente de .[2]
- Todo processo cujos caminhos são quase certamente constantes para todo momento é um processo contínuo de Feller, já que é simplesmente , que, por hipótese, depende continuamente de .[2]
- Toda difusão de Itō com deriva e coeficientes de difusão Lipschitz contínuos é um processo contínuo de Feller.[2]