Um processo de Gauss–Markov, que recebe este nome em homenagem ao matemático alemão Carl Friedrich Gauss e ao matemático russo Andrei Markov, é um processo estocástico que satisfaz os requisitos tanto dos processos de Gauss, como dos processos de Markov.[1] O processo de Gauss–Markov estacionário é também conhecido como processo de Ornstein–Uhlenbeck.
Todo processo de Gauss–Markov
possui as três seguintes propriedades:
- Se
for uma função escalar não nula de
, então,
é também um processo de Gauss–Markov;
- Se
for uma função escalar não decrescente de
, então,
é também um processo de Gauss–Markov;
- Há uma função escalar não nula
e uma função escalar não decrescente
, tal que
, em que
é um processo de Wiener padrão.
A terceira propriedade significa que todo processo de Gauss–Markov pode ser sintetizado a partir do processo de Wiener padrão.[2]
Um processo de Gauss–Markov com variância
e constante de tempo
tem:
- Autocorrelação exponencial:
.
- Uma função de densidade espectral de potência que tem a mesma forma da distribuição de Cauchy:

Note que a distribuição de Cauchy e este espectro diferem entre si por fatores de escala.
O que foi exposto acima produz a seguinte fatoração espectral:

que é importante na filtração de Wiener e outras áreas.
Há também algumas exceções triviais ao que foi descrito acima.[2]