Na extensão supersimétrica do Modelo Padrão da física de partículas, um sférmion é uma s-partícula hipotética de spin 0 de seu férmion associado.[1][2] Cada partícula tem uma s-partícula, cujo spin difere 12 entre as duas. No Modelo Padrão, os férmions têm spin-½ e, portanto, os sférmions têm spin 0.[3][4]
O nome "sférmion" foi formado pela regra geral de colocar um prefixo "s" ao nome de sua s-partícula, denotando-se que é um bóson escalar com spin 0. Por exemplo, a s-partícula do elétron é o selétron e a do quark top é o squark stop.
Uma consequência da supersimetria é que s-partículas têm o mesmo número de gauge que suas parceiras no Modelo Padrão. Isso significa que pares s-partícula–partícula têm carga de cor, isospin fraco e hipercarga (e consequentemente carga elétrica) iguais. A supersimetria ininterrupta também implica que esses pares tenham a mesma massa. Evidentemente, não é o caso, uma vez que, desse modo, as s-partículas já teriam sido detectadas. Assim, s-partículas devem ter massas diferentes das de suas parceiras e assim a supersimetria é interrompida.[5][6]
Squarks (também conhecidos como quarkinos)[7] são as s-partículas dos quarks. Esses incluem os squarks sup, sdown, scharm, sstrange, stop e sbottom.
Squarks
Squark
|
Simbolo
|
Quark associado
|
Símbolo
|
Primeira geração
|
Squark sup
|
|
Quark up
|
|
Squark sdown
|
|
Quark down
|
|
Segunda geração
|
Squark scharm
|
|
Quark charm
|
|
Squark sstrange
|
|
Quark strange
|
|
Third generation
|
Squark stop
|
|
Quark top
|
|
Squark sbottom
|
|
Quark bottom
|
|
Sléptons são as s-partículas dos léptons. Esses incluem selétron, smúon, stau e seus sabores de sneutrino correspondentes.[8]
Sléptons
Slépton
|
Símbolo
|
Lépton associado
|
Símbolo
|
Primeira geração
|
Selétron
|
|
Elétron
|
|
Sneutrino de selétron
|
|
Neutrino de elétron
|
|
Segunda geração
|
Smúon
|
|
Múon
|
|
Sneutrino de smúon
|
|
Neutrino de múon
|
|
Third generation
|
Stau
|
|
Tau
|
|
Sneutrino de stau
|
|
Neutrino de tau
|
|
Referências
- ↑ He-sheng, Chen; Dongsheng, Du; Weiguo, Li (2005). High Energy Physics: Ichep 2004 - Proceedings Of The 32nd International Conference (In 2 Volumes) (em inglês). [S.l.]: World Scientific. p. 109. ISBN 9789814481274. Consultado em 30 de Setembro de 2019
- ↑ Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop (em inglês). [S.l.]: World Scientific. ISBN 9789814485586. Consultado em 30 de Setembro de 2019
- ↑ Baer, Howard; Tata, Xerxes (2006). Weak Scale Supersymmetry: From Superfields to Scattering Events (em inglês). [S.l.]: Cambridge University Press. p. 129. ISBN 9781139455077. Consultado em 30 de Setembro de 2019
- ↑ Cline, David B (1997). Flavor-changing Neutral Currents: Present And Future Studies: Proceedings Of The Symposium (em inglês). [S.l.]: World Scientific. p. 229. ISBN 9789814545822. Consultado em 30 de Setembro de 2019
- ↑ Seamus, Hegarty; Keith, Potter; Emanuele, Quercigh (1992). Joint International Lepton-photon Symposium And Europhysics Conference On High Energy Physics - Lp-hep '91 (In 2 Volumes) (em inglês). [S.l.]: World Scientific. p. 500. ISBN 9789814555531. Consultado em 30 de Setembro de 2019
- ↑ Khalil, Shaaban; Moretti, Stefano (2017). Supersymmetry Beyond Minimality: From Theory to Experiment (em inglês). [S.l.]: CRC Press. ISBN 9781315350875. Consultado em 30 de Setembro de 2019
- ↑ Khlopov, Maxim Yu. (1999). Cosmoparticle Physics (em inglêa). [S.l.]: World Scientific. p. 53. ISBN 978-981-02-3188-0. Consultado em 23 de Junho de 2020
- ↑ Masayuki, Nakahata; Y, Itow; Masato, Shiozawa (2004). Neutrino Oscillations And Their Origin, Proceedings Of The 4th International Workshop (em inglês). [S.l.]: World Scientific. p. 442. ISBN 9789814485586. Consultado em 30 de Setembro de 2019