Deși acest articol conține o listă de referințe bibliografice, sursele sale rămân neclare deoarece îi lipsesc notele de subsol. Puteți ajuta introducând citări mai precise ale surselor. Întrucât este un articol tradus, a se vedea pagina de discuție, iar articolul de origine nu are nici el note de subsol, puteți ajuta și supraveghind acel articol, iar când acolo apar note de subsol, copiați-le și aici. |
Pavare apeirogonala de ordin infinit | |
Pe modelul discului Poincaré al planului hiperbolic | |
Descriere | |
---|---|
Tip | pavare uniformă hiperbolică |
Configurația vârfului | ∞∞ |
Simbol Wythoff | ∞ | ∞ 2 ∞ ∞ | ∞ |
Simbol Schläfli | {∞,∞} |
Diagramă Coxeter | |
Grup de simetrie | [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞) |
Grup de rotație | [∞,∞]+, (∞∞2) [(∞,∞,∞)]+, (∞∞∞) |
Poliedru dual | autoduală |
Proprietăți | tranzitivă pe vârfuri, laturi și fețe |
În geometrie pavarea apeirogonală de ordin infinit este o pavare regulată a planului hiperbolic. Este reprezentată de simbolul Schläfli {∞,∞}, având un număr (numărabil) infinit de apeirogoane în jurul fiecărui vârf. Toate vârfurile sunt ideale, situate la „infinit” și văzute la limita proiecției pe discul hiperbolic Poincaré.
Această pavare reprezintă domeniile fundamentale ale simetriei *∞∞.
Această pavare poate fi colorată alternativ în simetria [(∞,∞,∞)] din 3 poziții ale generatorului.
Domenii | 0 | 1 | 2 |
---|---|---|---|
simetrie: [(∞,∞,∞)] |
t0{(∞,∞,∞)} |
t1{(∞,∞,∞)} |
t2{(∞,∞,∞)} |
Reuniunea acestei pavări cu duala sa poate fi văzută aici ca linii roșii și albastre ortogonale, iar combinate definesc liniile unui domeniu fundamental *2∞2∞.
Pavări uniforme paracompacte din familia [∞,∞] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
= = |
= = |
= = |
= = |
= = |
= |
= | ||||
{∞,∞} | t{∞,∞} | r{∞,∞} | 2t{∞,∞}=t{∞,∞} | 2r{∞,∞}={∞,∞} | rr{∞,∞} | tr{∞,∞} | ||||
Pavări duale | ||||||||||
V∞∞ | V∞.∞.∞ | V(∞.∞)2 | V∞.∞.∞ | V∞∞ | V4.∞.4.∞ | V4.4.∞ | ||||
Alternări | ||||||||||
[1+,∞,∞] (*∞∞2) |
[∞+,∞] (∞*∞) |
[∞,1+,∞] (*∞∞∞∞) |
[∞,∞+] (∞*∞) |
[∞,∞,1+] (*∞∞2) |
[(∞,∞,2+)] (2*∞∞) |
[∞,∞]+ (2∞∞) | ||||
h{∞,∞} | s{∞,∞} | hr{∞,∞} | s{∞,∞} | h2{∞,∞} | hrr{∞,∞} | sr{∞,∞} | ||||
Duale alternate | ||||||||||
V(∞.∞)∞ | V(3.∞)3 | V(∞.4)4 | V(3.∞)3 | V∞∞ | V(4.∞.4)2 | V3.3.∞.3.∞ |
Pavări uniforme paracompacte din familia [∞,∞,∞] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) h2{∞,∞} |
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) h2{∞,∞} |
(∞,∞,∞) h{∞,∞} |
r(∞,∞,∞) r{∞,∞} |
t(∞,∞,∞) t{∞,∞} | ||||
Pavări duale | ||||||||||
V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞∞ | V∞.∞.∞.∞ | V∞.∞.∞ | ||||
Alternări | ||||||||||
[(1+,∞,∞,∞)] (*∞∞∞∞) |
[∞+,∞,∞)] (∞*∞) |
[∞,1+,∞,∞)] (*∞∞∞∞) |
[∞,∞+,∞)] (∞*∞) |
[(∞,∞,∞,1+)] (*∞∞∞∞) |
[(∞,∞,∞+)] (∞*∞) |
[∞,∞,∞)]+ (∞∞∞) | ||||
Duale alternate | ||||||||||
V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V(∞.∞)∞ | V(∞.4)4 | V3.∞.3.∞.3.∞ |