Для улучшения этой статьи желательно:
|
В 1967 году Эндрю Витерби разработал и проанализировал алгоритм декодирования, основанный на принципе максимального правдоподобия. Алгоритм оптимизирован за счёт использования особенностей структуры конкретной решётки кода. Преимущество декодирования Витерби по сравнению с декодированием по методу полного перебора заключается в том, что сложность декодера Витерби не является функцией количества символов в последовательности кодовых слов.
Алгоритм включает в себя вычисление меры подобия (или расстояния), между сигналом, полученным в момент времени , и всеми путями решётки, входящими в каждое состояние в момент времени . В алгоритме Витерби не рассматриваются те пути решётки, которые, согласно принципу максимального правдоподобия, заведомо не могут быть оптимальными. Если в одно и то же состояние входят два пути, выбирается тот, который имеет лучшую метрику; такой путь называется выживающим. Отбор выживающих путей выполняется для каждого состояния. Таким образом, декодер углубляется в решётку, принимая решения путём исключения менее вероятных путей. Предварительный отказ от маловероятных путей упрощает процесс декодирования. В 1969 году Джим Омура (англ.) показал, что основу алгоритма Витерби составляет оценка максимального правдоподобия. Отметим, что задачу отбора оптимальных путей можно выразить как выбор кодового слова с максимальной метрикой правдоподобия или минимальной метрикой расстояния.
Наилучшей схемой декодирования корректирующих кодов является декодирование методом максимального правдоподобия[источник не указан 4299 дней], когда декодер определяет набор условных вероятностей , соответствующих всем возможным кодовым векторам , и решение принимает в пользу кодового слова, соответствующего максимальному . Для двоичного симметричного канала без памяти (канала, в котором вероятности передачи 0 и 1, а также вероятности ошибок вида 0 -> 1 и 1 -> 0 одинаковы, ошибки в j-м и i-м символах кода независимы) декодер максимального правдоподобия сводится к декодеру минимального хеммингова расстояния. Последний вычисляет расстояние Хемминга между принятой последовательностью r и всеми возможными кодовыми векторами и выносит решение в пользу того вектора, который оказывается ближе к принятому. Естественно, что в общем случае такой декодер оказывается очень сложным и при больших размерах кодов и практически нереализуемым. Характерная структура сверточных кодов (повторяемость структуры за пределами окна длиной ) позволяет создать вполне приемлемый по сложности декодер максимального правдоподобия.
На вход декодера поступает сегмент последовательности длиной , превышающей кодовую длину блока . Назовем окном декодирования. Сравним все кодовые слова данного кода (в пределах сегмента длиной ) с принятым словом и выберем кодовое слово, ближайшее к принятому. Первый информационный кадр выбранного кодового слова принимается в качестве оценки информационного кадра декодированного слова. После этого в декодер вводится новых символов, а введенные ранее самые старые символов сбрасываются, и процесс повторяется для определения следующего информационного кадра. Таким образом, декодер Витерби последовательно обрабатывает кадр за кадром, двигаясь по решетке, аналогичной используемой кодером. В каждый момент времени декодер не знает, в каком узле находится кодер, и не пытается его декодировать. Вместо этого декодер по принятой последовательности определяет наиболее правдоподобный путь к каждому узлу и определяет расстояние между каждым таким путём и принятой последовательностью. Это расстояние называется мерой расходимости пути. В качестве оценки принятой последовательности выбирается сегмент, имеющий наименьшую меру расходимости. Путь с наименьшей мерой расходимости называется выжившим путём.
Рассмотрим работу декодера Витерби на простом примере. Полагаем, что кодирование производится с использованием сверточного (7,5)-кода. Пользуясь решетчатой диаграммой кодера, попытаемся, приняв некоторый сегмент , проследить наиболее вероятный путь кодера. При этом для каждого сечения решетчатой диаграммы будем отмечать меру расходимости пути к каждому её узлу. Предположим, что передана кодовая последовательность U = (00000000…), а принятая последовательность имеет вид r = (10001000…), то есть в первом и в третьем кадрах кодового слова возникли ошибки. Как мы уже убедились, процедура и результат декодирования не зависят от передаваемого кодового слова и определяются только ошибкой, содержащейся в принятой последовательности. Поэтому проще всего считать, что передана нулевая последовательность, то есть U = (00000000…). Приняв первую пару символов (10), декодер определяет меру расходимости для первого сечения решетки, приняв следующую пару символов (00), — для второго сечения и т. д. При этом из входящих в каждый узел путей оставляем путь с меньшей расходимостью, поскольку путь с большей на данный момент расходимостью уже не сможет стать в дальнейшем короче. Заметим, что для рассматриваемого примера начиная с четвёртого уровня метрика (или мера расходимости) нулевого пути меньше любой другой метрики. Поскольку ошибок в канале больше не было, ясно, что в конце концов в качестве ответа будет выбран именно этот путь. Из этого примера также видно, что выжившие пути могут достаточно долго отличаться друг от друга. Однако на шестом-седьмом уровне первые семь ребер всех выживших путей совпадут друг с другом. В этот момент согласно алгоритму Витерби и принимается решение о переданных символах, так как все выжившие пути выходят из одной вершины, то есть соответствуют одному информационному символу.
Глубина, на которой происходит слияние выживших путей, не может быть вычислена заранее; она является случайной величиной, зависящей от кратности и вероятности возникающих в канале ошибок. Поэтому на практике обычно не ждут слияния путей, а устанавливают фиксированную глубину декодирования.
На шаге i) степень различия метрик правильного и неправильного путей достаточно велика (, ), то есть в данном случае можно было бы ограничить глубину декодирования величиной . Но иногда более длинный к данному сечению путь может оказаться в конечном итоге самым коротким, поэтому особенно увлекаться уменьшением размера окна декодирования b с целью упрощения работы декодера не стоит. На практике глубину декодирования обычно выбирают в диапазоне , где — число исправляемых данным кодом ошибок. Несмотря на наличие в принятом фрагменте двух ошибок, его декодирование произошло без ошибки и в качестве ответа будет принята переданная нулевая последовательность.