Изофота (англ. Isophote) — кривая на освещённой поверхности, соединяющая точки с одинаковой яркостью. Предположим, что освещённость создаётся пучком параллельных лучей света, а яркость выражается скалярным произведением:
представляет собой единичный вектор, нормальный к поверхности в точке , а вектор является единичным вектором в направлении распространения света. В случае , когда свет перпендикулярен к нормали к поверхности, точка является точкой на силуэте поверхности в направлении . Яркость 1 означает, что луч света перпендикулярен поверхности. На плоскости в рамках предположения о параллельности пучка лучей изофоты будут отсутствовать.
В системах автоматизированного проектирования изофоты используются для оптического контроля гладкости стыковки поверхностей. Для поверхности (заданной неявно или параметрически), дифференцируемой достаточное количество раз, вектор нормали зависит от первых производных. Следовательно, дифференцируемость изофот и их геометрическая непрерывность имеют на 1 меньший порядок, чем сама поверхность. Если в точке поверхности непрерывными являются только касательные плоскости (гладкость порядка 1), то изофоты обладают изломами (гладкость только нулевого порядка).
В следующем примере две пересекающиеся поверхности Безье закрыты участком третьей поверхности. На рисунке слева закрывающая поверхность касается поверхностей Безье с порядком гладкости 1, на рисунке справа — с порядком гладкости 2. Из самих рисунков разница ситуаций видна плохо, но исследование геометрической непрерывности изофот показывает: на рисунке слева изофоты имеют изломы (гладкость порядка 0), а на рисунке справа изофоты выглядят гладкими (гладкость порядка 1).
В астрономии изофотой называют кривую на изображении объекта, проходящую через точки с одинаковой поверхностной яркостью[1]. Часто их применяют для графического представления распределения поверхностной яркости в протяжённых источниках света, например, в галактиках. В отличие от простых изображений, карты изофот позволяют одновременно визуально оценить структуру галактики как в центральных областях, так и на периферии, а также приближённо оценить закон, по которому распределена поверхностная яркость в галактике[2].
Для неявно заданной поверхности с уравнением изофоты удовлетворяют равенству
Это означает: точки на изофоте с заданным параметром представляют собой решение нелинейной системы
которую можно рассматривать как линию пересечения двух неявно заданных поверхностей. Используя алгоритм, представленный Bajaj и др. (см. ссылки), можно вычислить многоугольник из точек изофот.
В случае параметрически заданной поверхности уравнение для изофот имеет вид
что эквивалентно выражению
Данное уравнение описывает неявно заданную кривую в плоскости s-t, которую можно представить с помощью подходящего алгоритма и преобразовать с помощью в точки на поверхности.