Четырёхмерное евклидово пространство допускает экзотические гладкие структуры, то есть не диффеоморфные четырёхмерному евклидову пространству.
В размерностях, отличных от 4, экзотических гладких структур на евклидовом пространстве не существует.
Существование таких примеров было доказано в 1982 году Майклом Фридманом и другими.
Доказательство использовало теорему Фридмана о топологических 4-мерных многообразиях, и теорему Саймона Дональдсона о гладких 4-мерных многообразиях.
До этого существование экзотических гладких структур было известно на сферах, хотя вопрос о существовании таких структур на 4-мерной сфере остаётся открытым (по состоянию на 2016 год).