Индекс Тейла

Индекс Тейла представляет собой показатель измерения социального неравенства, предложенный в 1967 году нидерландским экономистом Анри Тейлом[1]. Индекс Тейла основан на предложенном Шенноном понятии информационной энтропии. В отличие от коэффициента Джини индекс Тейла разложим, то есть, если популяция разбита на группы, то индекс Тейла всей популяции можно записать в виде взвешенной суммы индексов Тейла каждой из групп и показателя социального неравенства между группами. Разложимость индекса Тейла позволяет говорить о проценте социального неравенства, объяснимого заданным разбиением популяции на группы, и сравнивать различные разбиения[2].

Расчёт индекса Тейла

[править | править код]

Индексы Тейла и рассчитываются по следующим формулам[3]:

где доход -го индивидуума, среднее значение дохода, и количество индивидуумов в популяции. Если доходы всех индивидуумов равны, то индексы Тейла равны нулю. Если доход всей популяции сконцентрирован в руках одного индивидуума, то индексы Тейла равны ln N. Иногда в литературе индексом Тейла называется только индекс , в то время как называется среднелогарифмическим отклонением[4]. Среднелогарифмическое отклонение чувствительно к изменениям у нижней границы шкалы распределения, в то время как индекс Тейла одинаково чувствителен к изменениям по всей шкале распределения[5].

Разложимость индекса Тейла

[править | править код]

Если популяция разбита на группы , то индекс Тейла можно записать как

где ,  — среднее значение дохода в группе , среднее значение дохода во всей популяции,  — количество индивидуумов в группе и  — количество индивидуумов в популяции[2]. Отношение  — процент социального неравенства, объяснимый заданным разбиением на группы. Так, по 32,6 % неравенства уровней расходов в Индонезии может быть объяснено уровнем образования главы семьи, 18,9 % провинцией проживания и только 2,6 % гендером главы семьи[6].

Математические особенности индекса Тейла

[править | править код]

Индекс Тейла инвариантен по отношению к умножению, то есть, он не изменяется при девальвации. Индекс Тейла не инвариантен по отношению к сложению.

Индекс Тейла и индекс Аткинсона

[править | править код]

Индекс Аткинсона вычисляется с применением функции , где  — индекс Тейла[7].

Применения индекса Тейла

[править | править код]

Кроме многочисленных применений в области экономики[6], индекс Тейла используется при оценке качества ирригационных систем[8] и распределения метрик программного обеспечения[9].

  • Статистическая система R позволяет вычисление индекса Тейла с помощью пакета «ineq».
  • Аналогичный пакет доступен и для системы MATLAB.

Примечания

[править | править код]
  1. H. Theil, Economics and Information Theory, North-Holland, 1967.
  2. 1 2 F. A. Cowell, S. P. Jenkins, How much inequality can we explain? A methodology and an application to the United States, Economic Journal 105 (429) (1995) 421-30.
  3. INFORM. Дата обращения: 19 октября 2010. Архивировано из оригинала 25 марта 2009 года.
  4. F. A. Cowell, Measurement of inequality, Vol. 1 of Handbook of Income Distribution, Elsevier, 2000, pp. 87 — 166.
  5. Алин Кудуэль, Йеско С.Хендшель и Квентин T. Уодон. Измерение и анализ бедности. Дата обращения: 19 октября 2010. Архивировано 5 ноября 2010 года.
  6. 1 2 T. Akita, R. A. Lukman, Y. Yamada, Inequality in the distribution of household expenditures in Indonesia: A Theil decomposition analysis, Developing Economies XXXVII (2) (1999) 197—221.
  7. James E. Foster in annexe A.4.1 (p.142) of: Amartya Sen, On Economic Inequality, 1973/1997
  8. Rajan K. Sampath. Equity Measures for Irrigation Performance Evaluation. Water International, 13(1), 1988.
  9. A. Serebrenik, M. van den Brand. Theil index for aggregation of software metrics values. 26th IEEE International Conference on Software Maintenance. IEEE Computer Society.