Негипотенузное число — это натуральное число, квадрат которого не может быть записан как сумма двух ненулевых квадратов. Название порождено фактом, что ребро с длиной, равной негипотенузному числу, не могут образовать гипотенузу прямоугольного треугольника с целыми сторонами.
Числа 1, 2, 3 и 4 являются негипотенузными. Число 5, однако, не является негипотенузным числом, так как 52 равно 32 + 42.
Первые пятьдесят негипотенузных чисел:
Хотя негипотенузные числа часты среди малых целых чисел, они становятся всё более и более редкими для больших чисел. Всё же существует бесконечно много негипотенузных чисел, а количество гипотенузных чисел, не превосходящих значения x, асимптотически растёт пропорционально x/√log x[1].
Негипотенузные числа — это те числа, которые не имеют простых делителей вида 4k+1[2]. Эквивалентно, любое число, которое нельзя представить в виде , где K, m и n являются натуральными числами, никогда не являются негипотенузным числом. Число, все простые делители которого не имеют вид 4k+1, не может быть гипотенузой примитивного треугольника, но может быть, всё же, гипотенузой непримитивного треугольника[3].
Для улучшения этой статьи желательно:
|