В теории причинных множеств важную роль играет теорема[1]Дэвида Маламента (David Malament[англ.]), которая гласит, что если существует биективное отображение между двумя различающими прошлое и будущее[англ.] областями пространства-времени, которое сохраняет их причинную структуру, то это отображение является конформно изоморфным. Конформный множитель, который остается неопределенным, связан с объемом областей в пространстве-времени. Его можно найти, указав элемент объема для каждой точки пространства-времени. Общий объем области пространства-времени затем может быть найден путем подсчета количества точек в этой области.
Хотя в этом определении используется рефлексивное соглашение, мы могли бы выбрать нерефлексивное соглашение, в котором отношение порядка нерефлексивно.
F. Dowker, Introduction to causal sets and their phenomenology, Gen Relativ Gravit (2013) 45:1651-1667 doi:10.1007/s10714-013-1569-y (Overview of recent research)
J. Henson, The causal set approach to quantum gravity, arXiv:gr-qc/0601121; (Introduction, Overview)
D.D. Reid; Introduction to causal sets: an alternate view of spacetime structure; Canadian Journal of Physics 79, 1-16 (2001); arXiv:gr-qc/9909075; (General);
R.D. Sorkin, Causal Sets: Discrete Gravity (Notes for the Valdivia Summer School), In Proceedings of the Valdivia Summer School, edited by A. Gomberoff and D. Marolf; arXiv:gr-qc/0309009; (Introduction, Glossary)
A. Einstein, Letter to H.S. Joachim, August 14, 1954; Item 13-453 cited in J. Stachel, «Einstein and the Quantum: Fifty Years of Struggle», in From Quarks to Quasars, Philosophical Problems of Modern Physics, edited by R.G. Colodny (U. Pittsburgh Press, 1986), pages 380—381; (Historical)
R.D. Sorkin, Does a Discrete Order underly Spacetime and its Metric?, Proceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics, (Victoria, Canada, May, 1989), edited by A. Coley, F. Cooperstock, B.Tupper, pp. 82-86, (World Scientific, 1990); (Introduction)
R.D. Sorkin, First Steps with Causal SetsАрхивировано 30 сентября 2013 года., General Relativity and Gravitational Physics, (Proceedings of the Ninth Italian Conference of the same name, held Capri, Italy, September, 1990), 68-90, (World Scientific, Singapore), (1991), R. Cianci, R. de Ritis, M. Francaviglia, G. Marmo, C. Rubano, P. Scudellaro (eds.); (Introduction)
R.D. Sorkin, Spacetime and Causal SetsАрхивировано 30 сентября 2013 года., Relativity and Gravitation: Classical and Quantum, (Proceedings of the SILARG VII Conference, held Cocoyoc, Mexico, December, 1990), pages 150—173, (World Scientific, Singapore, 1991), J.C. D’Olivo, E. Nahmad-Achar, M.Rosenbaum, M.P. Ryan, L.F. Urrutia and F. Zertuche (eds.); (Introduction)
R.D. Sorkin, Forks in the Road, on the Way to Quantum Gravity, Talk given at the conference entitled «Directions in General Relativity», held at College Park, Maryland, May, 1993, Int. J. Th. Phys. 36: 2759—2781 (1997); arXiv:gr-qc/9706002; (Philosophical, Introduction)
G.'t Hooft, Quantum gravity: a fundamental problem and some radical ideas, Recent Developments in Gravitation (Proceedings of the 1978 Cargese Summer Institute) edited by M. Levy and S. Deser (Plenum, 1979); (Introduction, Foundations, Historical)
A.R. Daughton; The Recovery of Locality for Causal Sets and Related Topics; PhD thesis (Syracuse University, 1993); (Locality)
D. Dou, Causal Sets, a Possible Interpretation for the Black Hole Entropy, and Related Topics; PhD thesis (SISSA, Trieste, 1999); arXiv:gr-qc/0106024 (Black hole entropy)
R. Sverdlov; Quantum Field Theory and Gravity in Causal Sets; PhD Thesis (University of Michigan 2009); arXiv: 0905.2263 (Quantum Field Theory and Gravity)
D.A. Meyer; Talk given at the 1997 Santa Fe workshop: Causal Sets and Feynman diagrams; Presented at «New Directions in Simplicial Quantum Gravity» July 28 — August 8, 1997; (Feynman diagrams, Quantum Dynamics)
L. Bombelli, R.D. Sorkin, When are Two Lorentzian Metrics close?, General Relativity and Gravitation, proceedings of the 12th International Conference on General Relativity and Gravitation, held July 2-8, 1989, in Boulder, Colorado, USA, under the auspices of the International Society on General Relativity and Gravitation, 1989, p. 220; (Closeness of Lorentzian manifolds)
L. Bombelli, Causal sets and the closeness of Lorentzian manifolds, Relativity in General: proceedings of the Relativity Meeting "93, held September 7-10, 1993, in Salas, Asturias, Spain. Edited by J. Diaz Alonso, M. Lorente Paramo. ISBN 2-86332-168-4. Published by Editions Frontieres, 91192 Gif-sur-Yvette Cedex, France, 1994, p. 249; (Closeness of Lorentzian manifolds)
L. Bombelli, Statistical Lorentzian geometry and the closeness of Lorentzian manifolds, J. Math. Phys.41:6944-6958 (2000); arXiv:gr-qc/0002053 (Closeness of Lorentzian manifolds, Manifoldness)
J. Henson, Constructing an interval of Minkowski space from a causal set, Class. Quantum Grav. 23 (2006) L29-L35; arXiv:gr-qc/0601069; (Continuum limit, Sprinkling)
S. Major, D.P. Rideout, S. Surya, On Recovering Continuum Topology from a Causal Set, J.Math.Phys.48:032501,2007; arXiv:gr-qc/0604124 (Continuum Topology)
S. Major, D.P. Rideout, S. Surya; Spatial Hypersurfaces in Causal Set Cosmology; Class. Quantum Grav. 23 (2006) 4743-4752; arXiv:gr-qc/0506133v2; (Observables, Continuum topology)
S. Major, D.P. Rideout, S. Surya, Stable Homology as an Indicator of Manifoldlikeness in Causal Set Theory, arXiv:0902.0434 (Continuum topology and homology)
D.A. Meyer, The Dimension of Causal Sets I: Minkowski dimension, Syracuse University preprint (1988); (Dimension theory)
D.A. Meyer, The Dimension of Causal Sets II: Hausdorff dimension, Syracuse University preprint (1988); (Dimension theory)
A.V. Levichev; Prescribing the conformal geometry of a lorentz manifold by means of its causal structure; Soviet Math. Dokl. 35:452-455, (1987); (Geometry, Causal Structure)
D.P. Rideout, P. Wallden; Spacelike distance from discrete causal order; arXiv:0810.1768 (Spatial distances)
Вычисление космологической постоянной
M. Ahmed, S. Dodelson, P.B. Greene, R.D. Sorkin, Everpresent lambda; Phys. Rev. D69, 103523, (2004) arXiv:astro-ph/0209274v1; (Cosmological Constant)
Y. Jack Ng and H. van Dam, A small but nonzero cosmological constant; Int. J. Mod. Phys D. 10 : 49 (2001) arXiv:hep-th/9911102v3; (PreObservation Cosmological Constant)
Y. Kuznetsov, On cosmological constant in Causal Set theory; arXiv:0706.0041
R.D. Sorkin, A Modified Sum-Over-Histories for Gravity; reported in Highlights in gravitation and cosmology: Proceedings of the International Conference on Gravitation and Cosmology, Goa, India, 14-19 December 1987, edited by B. R. Iyer, Ajit Kembhavi, Jayant V. Narlikar, and C. V. Vishveshwara, see pages 184—186 in the article by D. Brill and L. Smolin: «Workshop on quantum gravity and new directions», pp 183—191 (Cambridge University Press, Cambridge, 1988); (PreObservation Cosmological Constant)
R.D. Sorkin, First Steps with Causal SetsАрхивировано 30 сентября 2013 года., in R. Cianci, R. de Ritis, M. Francaviglia, G. Marmo, C. Rubano, P. Scudellaro (eds.), General Relativity and Gravitational Physics (Proceedings of the Ninth Italian Conference of the same name, held Capri, Italy, September, 1990), pp. 68-90 (World Scientific, Singapore, 1991); (PreObservation Cosmological Constant)
R.D. Sorkin; Forks in the Road, on the Way to Quantum Gravity, talk given at the conference entitled «Directions in General Relativity», held at College Park, Maryland, May, 1993; Int. J. Th. Phys. 36 : 2759—2781 (1997) arXiv:gr-qc/9706002; (PreObservation Cosmological Constant)
R.D. Sorkin, Discrete Gravity; a series of lectures to the First Workshop on Mathematical Physics and Gravitation, held Oaxtepec, Mexico, Dec. 1995 (unpublished); (PreObservation Cosmological Constant)
R.D. Sorkin, Is the cosmological «constant» a nonlocal quantum residue of discreteness of the causal set type?; Proceedings of the PASCOS-07 Conference, July 2007, Imperial College London; arXiv:0710.1675; (Cosmological Constant)
J. Zuntz, The CMB in a Causal Set Universe, arXiv:0711.2904 (CMB)
Лоренцевская инвариантность
L. Bombelli, J. Henson, R.D. Sorkin; Discreteness without symmetry breaking: a theorem; arXiv:gr-qc/0605006v1; (Lorentz invariance, Sprinkling)
F. Dowker, J. Henson, R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and discreteness; Mod. Phys. Lett. A19, 1829—1840, (2004) arXiv:gr-qc/0311055v3; (Lorentz invariance, Phenomenology, Swerves)
F. Dowker, J. Henson, R.D. Sorkin, Discreteness and the transmission of light from distant sources; arXiv:1009.3058 (Coherence of light, Phenomenology)
J. Henson, Macroscopic observables and Lorentz violation in discrete quantum gravity; arXiv:gr-qc/0604040v1; (Lorentz invariance, Phenomenology)
N. Kaloper, D. Mattingly, Low energy bounds on Poincaré violation in causal set theory; Phys. Rev. D 74, 106001 (2006) arXiv:astro-ph/0607485 (Poincaré invariance, Phenomenology)
D. Mattingly, Causal sets and conservation laws in tests of Lorentz symmetry; Phys. Rev. D 77, 125021 (2008) arXiv:0709.0539 (Lorentz invariance, Phenomenology)
S. Johnston; Particle propagators on discrete spacetime; 2008 Class. Quantum Grav. 25 202001; arXiv:0806.3083 (Quantum Field Theory)
S. Johnston; The Feynman propagator for a Free Scalar Field on a Causal Set; Phys. Rev. Lett. 103, 180401 (2009); arXiv:0909.0944 (Quantum Field Theory)
R.D. Sorkin; Does Locality Fail at Intermediate Length-Scales; Towards Quantum Gravity, Daniele Oriti (ed.) (Cambridge University Press, 2007); arXiv:gr-qc/0703099v1; (d’Alembertian, Locality)
R. Sverdlov, L. Bombelli; Gravity and Matter in Causal Set Theory; arXiv:0801.0240
R. Sverdlov; A Geometrical Description of Spinor Fields; arXiv:0802.1914
R. Sverdlov; Bosonic Fields in Causal Set Theory; arXiv:0807.4709
R. Sverdlov; Gauge Fields in Causal Set Theory; arXiv:0807.2066
R. Sverdlov; Spinor fields in Causal Set Theory; arXiv:0808.2956
Динамика
M. Ahmed, D. Rideout, Indications of de Sitter Spacetime from Classical Sequential Growth Dynamics of Causal Sets; arXiv:0909.4771
A.Ash, P. McDonald, Moment Problems and the Causal Set Approach to Quantum Gravity; J.Math.Phys. 44 (2003) 1666—1678; arXiv:gr-qc/0209020
D.M.T. Benincasa, F. Dowker, The Scalar Curvature of a Causal Set; arXiv:1001.2725; (Scalar curvature, actions)
G. Brightwell; M. Luczak; Order-invariant Measures on Causal Sets; arXiv:0901.0240; (Measures on causal sets)
G. Brightwell; M. Luczak; Order-invariant Measures on Fixed Causal Sets; arXiv:0901.0242; (Measures on causal sets)
G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin; General covariance and the «problem of time» in a discrete cosmology; In ed. K. Bowden, Correlations:Proceedings of the ANPA 23 conference, August 16-21, 2001, Cambridge, England, pp. 1-17. Alternative Natural Philosophy Association, (2002).;arXiv:gr-qc/0202097; (Cosmology, Dynamics, Observables)
G. Brightwell, H.F. Dowker, R.S. Garcia, J. Henson, R.D. Sorkin; «Observables» in causal set cosmology; Phys. Rev. D67, 084031, (2003); arXiv:gr-qc/0210061; (Cosmology, Dynamics, Observables)
G. Brightwell, J. Henson, S. Surya; A 2D model of Causal Set Quantum Gravity: The emergence of the continuum; arXiv:0706.0375; (Quantum Dynamics, Toy Model)
A. Criscuolo, H. Waelbroeck; Causal Set Dynamics: A Toy Model; Class. Quantum Grav.16:1817-1832 (1999); arXiv:gr-qc/9811088; (Quantum Dynamics, Toy Model)
F. Dowker, S. Surya; Observables in extended percolation models of causal set cosmology;Class. Quantum Grav. 23, 1381—1390 (2006); arXiv:gr-qc/0504069v1; (Cosmology, Dynamics, Observables)
M. Droste, Universal homogeneous causal sets, J. Math. Phys. 46, 122503 (2005); arXiv:gr-qc/0510118; (Past-finite causal sets)
J. Henson, D. Rideout, R.D. Sorkin, S. Surya; Onset of the Asymptotic Regime for (Uniformly Random) Finite Orders; Experimental Mathematics 26, 3:253-266 (2017); (Cosmology, Dynamics)
X. Martin, D. O’Connor, D.P. Rideout, R.D. Sorkin; On the «renormalization» transformations induced by cycles of expansion and contraction in causal set cosmology; Phys. Rev. D 63, 084026 (2001); arXiv:gr-qc/0009063 (Cosmology, Dynamics)
D.P. Rideout, R.D. Sorkin; A classical sequential growth dynamics for causal sets, Phys. Rev. D, 6, 024002 (2000);arXiv:gr-qc/9904062 (Cosmology, Dynamics)
D.P. Rideout, R.D. Sorkin; Evidence for a continuum limit in causal set dynamics Phys. Rev. D 63:104011,2001; arXiv:gr-qc/0003117(Cosmology, Dynamics)
R.D. Sorkin; Indications of causal set cosmology; Int. J. Theor. Ph. 39(7):1731-1736 (2000); arXiv:gr-qc/0003043; (Cosmology, Dynamics)
R.D. Sorkin; Relativity theory does not imply that the future already exists: a counterexample; Relativity and the Dimensionality of the World, Vesselin Petkov (ed.) (Springer 2007, in press); arXiv:gr-qc/0703098v1; (Dynamics, Philosophy)
M. Varadarajan, D.P. Rideout; A general solution for classical sequential growth dynamics of Causal Sets; Phys. Rev. D 73 (2006) 104021; arXiv:gr-qc/0504066v3; (Cosmology, Dynamics)
M.R., Khoshbin-e-Khoshnazar (2013). "Binding Energy of the Very Early Universe: Abandoning Einstein for a Discretized Three–Torus Poset.A Proposal on the Origin of Dark Energy". Gravitation and Cosmology. 19 (2): 106—113. Bibcode:2013GrCo...19..106K. doi:10.1134/s0202289313020059. S2CID121288092.;(Dynamics, Poset)