Прямоугольный дельтоид — это дельтоид (четырёхугольник, стороны которого можно сгруппировать в две пары смежных сторон одинаковой длины), который может быть вписан в окружность[1]. То есть это дельтоид с описанной окружностью (вписанный дельтоид). Тогда прямоугольный дельтоид является выпуклым четырёхугольником и имеет два противоположных прямых угла[2].
Все прямоугольные дельтоиды являются вписанно-описанными четырёхугольниками (у которых есть описанная и вписанная окружность), поскольку все дельтоиды имеют вписанную окружность. Одна из диагоналей (которая служит осью симметрии) делит прямоугольный дельтоид на два прямоугольных треугольника и является также диаметром описанной окружности.
В описанном четырёхугольнике (то есть обладающем вписанной окружностью), четыре отрезка между центром вписанной окружности и точками касания четырёхугольника разбивают четырёхугольник на четыре прямоугольных дельтоида.
Специальным случаем прямоугольных дельтоидов являются квадраты, у которых диагонали имеют одинаковую длину и вписанная и описанная окружности концентричны.
Дельтоид является прямоугольным дельтоидом тогда и только тогда, когда он имеет описанную окружность (по определению). Это эквивалентно тому, что дельтоид имеет два противоположных прямых угла.
Поскольку прямоугольный дельтоид можно разбить на два прямоугольных треугольника, следующие формулы легко получаются из хорошо известных свойств прямоугольных треугольников. В прямоугольном дельтоиде ABCD, где два противоположных угла B и D прямые, два других угла могут быть вычислены из
где a = AB = AD и b = BC = CD. Площадь прямоугольного дельтоида равна
Диагональ AC, которая является осью симметрии, имеет длину
и, поскольку диагонали перпендикулярны (так что прямоугольный дельтоид является ортодиагональным четырёхугольником с площадью ), другая диагональ BD имеет длину
Радиус описанной окружности равен (согласно теореме Пифагора)
и, поскольку все дельтоиды являются описанными, радиус вписанной окружности задаётся формулой
где s является полупериметром.
Площадь задаётся в терминах радиуса R описанной окружности и радиуса r вписанной окружности как[3].
Если мы обозначим отрезки на диагоналях от точки пересечения до вершин по часовой стрелке через , то
Это прямое следствие теоремы о среднем геометрическом.
Двойственным многоугольником[англ.] для прямоугольного дельтоида является равнобочная трапеция[англ.][1].
Иногда прямоугольный дельтоид определяется как дельтоид с по меньшей мере одним прямым углом[4]. Если имеется только один прямой угол, он должен быть между двумя сторонами равной длины. В этом случае формулы, приведённые выше, не работают.
Для улучшения этой статьи желательно:
|