Псевдодополнение в теории решёток — бинарная операция в решётке, определяемая для элементов решётки и как наибольший элемент такой, что ; обозначение — , прочтение — «псевдодополнение относительно ». Импликативная решётка (или брауэрова решётка) — решётка, в которой для каждых двух элементов существует псевдодополнение.
Аксиоматически, импликативная решётка получается присоединением к аксиомам решётки следующих соотношений:
Для импликативных решёток с нулём вводится также унарная операция (абсолютного) псевдодополнения: ; в этом случае, бинарное псевдодополнение называется относительным псевдодополнением.
Импликативные решётки образуют многообразие. Важнейшие специальные классы импликативных решёток — алгебры Гейтинга и булевы алгебры, используемые в качестве моделей интуиционистского и классического исчисления высказываний соответственно.
Импликативные решётки являются полугруппами с делением, в которых левому и правому делению и соответствует одна операция .
Всякая импликативная решётка дистрибутивна; каждая конечная дистрибутивная решётка — импликативна.
Во всякой импликативной решётке имеется максимальный элемент (), обычно обозначаемый как 1; минимальный элемент в общем случае может не существовать, если он существует — то импликативная решётка образует алгебру Гейтинга.
Для всех элементов , и всякой импликативной решётки верны следующие утверждения:
Эти утверждения используются при доказательстве того, что алгебры Гейтинга являются моделями интуиционистского исчисления высказываний.
Подмножество импликативной решётки является её фильтром тогда и только тогда, когда и ; если — фильтр, то факторрешётка импликативна, а класс — её максимальный элемент.