Необходимо проверить качество перевода, исправить содержательные и стилистические ошибки. |
В статье суммируется информация о классах дискретных групп симметрии евклидовой плоскости. Группы симметрии, приведённые здесь, именуются по трём схемам именования: международная нотация, орбифолдная нотация[англ.] и нотация Коксетера[англ.]. Существует три вида групп симметрии на плоскости:
На плоскости имеется точка, инвариантная относительно каждого преобразования. Существует два бесконечных семейства дискретных двумерных точечных групп. Группы определяются параметром n, равным порядку подгруппы вращений. Также параметр n равен показателю группы.
Семейство | Межд. (орбифолд[англ.]) |
Шёнфлиса | Геом. [1] Коксетер[англ.] |
Порядок | Примеры | |||||
---|---|---|---|---|---|---|---|---|---|---|
Циклические группы | n (n•) |
Cn | n [n]+ |
n | C1, [ ]+ (•) |
C2, [2]+ (2•) |
C3, [3]+ (3•) |
C4, [4]+ (4•) |
C5, [5]+ (5•) |
C6, [6]+ (6•) |
Диэдральные группы | nm (*n•) |
Dn | n [n] |
2n | D1, [ ] (*•) |
D2, [2] (*2•) |
D3, [3] (*3•) |
D4, [4] (*4•) |
D5, [5] (*5•) |
D6, [6] (*6•) |
На плоскости имеется прямая, которая переходит в себя при каждом преобразовании. При этом отдельные точки этой прямой могут не оставаться неподвижными.
7 групп бордюров, двумерных рёберных групп[англ.]. Символы Шёнфлиса даны как бесконечные пределы 7 диэдральных групп. Жёлтые области представляют бесконечные фундаментальные области для каждого бордюра.
IUC (орбифолд[англ.]) |
Геом. | Шёнфлис | Коксетер[англ.] | Фундаментальная область |
Пример |
---|---|---|---|---|---|
p1 (∞•) |
p1 | C∞ | [1,∞]+ |
||
p1m1 (*∞•) |
p1 | C∞v | [1,∞] |
IUC (Орбифолд) |
Геом. | Шёнфлис | Коксетер | Фундаментальная область |
Пример |
---|---|---|---|---|---|
p11g (∞×) |
p.g1 | S2∞ | [2+,∞+] |
||
p11m (∞*) |
p. 1 | C∞h | [2,∞+] |
IUC (Орбифолд) |
Геом. | Шёнфлис | Коксетер | Фундаментальная область |
Пример |
---|---|---|---|---|---|
p2 (22∞) |
p2 | D∞ | [2,∞]+ |
||
p2mg (2*∞) |
p2g | D∞d | [2+,∞] |
||
p2mm (*22∞) |
p2 | D∞h | [2,∞] |
17 групп обоев с конечными фундаментальными областями, упорядоченные по международной нотации, орбифолдной нотации[англ.] и нотации Коксетера[англ.] и классифицированы 5 решётками Браве на плоскости: квадратной, скошенной (параллелограммной), шестиугольной (ромбы с углами 60 градусов), прямоугольной и ромбической.
Группы p1 и p2 с зеркальной симметрией встречаются во всех классах. Связанная чистая группа Коксетера отражений дана для всех классов, за исключением косых.
|
|
|
|
В приведенной ниже таблице на пересечении строки, соответствующей группе , и столбца, соответствующего группе , находится минимальный индекс подгруппы , изоморфной . На диагонали находится минимальный индекс собственной подгруппы, изоморфной объемлющей группе.
o | 2222 | ×× | ** | *× | 22× | 22* | *2222 | 2*22 | 442 | 4*2 | *442 | 333 | *333 | 3*3 | 632 | *632 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p1 | p2 | pg | pm | cm | pgg | pmg | pmm | cmm | p4 | p4g | p4m | p3 | p3m1 | p31m | p6 | p6m | ||
o | p1 | 2 | ||||||||||||||||
2222 | p | 2 | 2 | 2 | ||||||||||||||
×× | pg | 2 | 2 | |||||||||||||||
** | pm | 2 | 2 | 2 | 2 | |||||||||||||
*× | cm | 2 | 2 | 2 | 3 | |||||||||||||
22× | pgg | 4 | 2 | 2 | 3 | |||||||||||||
22* | pmg | 4 | 2 | 2 | 2 | 4 | 2 | 3 | ||||||||||
*2222 | pmm | 4 | 2 | 4 | 2 | 4 | 4 | 2 | 2 | 2 | ||||||||
2*22 | cmm | 4 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ||||||||
442 | p4 | 4 | 2 | 2 | ||||||||||||||
4*2 | p4g | 8 | 4 | 4 | 8 | 4 | 2 | 4 | 4 | 2 | 2 | 9 | ||||||
*442 | p4m | 8 | 4 | 8 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | |||||
333 | p3 | 3 | 3 | |||||||||||||||
*333 | p3m1 | 6 | 6 | 6 | 3 | 2 | 4 | 3 | ||||||||||
3*3 | p31m | 6 | 6 | 6 | 3 | 2 | 3 | 4 | ||||||||||
632 | p6 | 6 | 3 | 2 | 4 | |||||||||||||
*632 | p6m | 12 | 6 | 12 | 12 | 6 | 6 | 6 | 6 | 3 | 4 | 2 | 2 | 2 | 3 |
Для улучшения этой статьи желательно:
|