Схемы на переключаемых конденсаторах — обширный класс схемотехнических решений, основанный на периодической коммутации конденсаторов.
Наибольшее распространение получил с освоением в промышленности интегральных микросхем по технологии с оксидной изоляцией (например, КМОП). Низкий уровень диэлектрической абсорбции и малые утечки диэлектрика позволили создавать высококачественные конденсаторы с хорошей повторяемостью. При этом с резисторами в рамках данной полупроводниковой технологии все было гораздо хуже с точки зрения занимаемой площади, повторяемости и стабильности номиналов, паразитных ёмкостей. Такая ситуация быстро привела к выработке ряда специфических схемотехнических решений.
Следует заметить, что решения на переключаемых конденсаторах и ранее применялись в дискретном исполнении в специальных случаях.
Схемы с накачкой заряда (англ. charge pump, зарядовый насос) относятся к одному из видов преобразователей постоянного напряжения в постоянное (DC-DC converters). Этот вид преобразователей использует конденсаторы в качестве накопителей заряда, который переносится от одного конденсатора к другому с помощью системы переключателей. Название «зарядовый насос» обычно означает маломощный повышающий преобразователь, в котором конденсаторы подключены к источнику тактовых импульсов, а роль переключателей выполняют диоды. Два логических состояния тактового импульса («0» или «1») задают две фазы переключения (топологии) схемы с накачкой заряда. К двухфазным зарядовым насосам относятся все диодные умножители напряжения, а также некоторые сложные преобразователи, такие как Fibonacci Charge Pump и Multiple-Lift Luo Converters. Существуют также схемы с несколькими фазами переключения (multi-phase). В случае если зарядный насос понижает напряжение и имеется какой-либо механизм его плавной регулировки используется название преобразователь на переключаемых конденсаторах (ППК). Выходное напряжение ППК на холостом ходу в установившемся режиме можно найти, решив систему линейных уравнений. При условии, что весь полученный заряд передается на выход, коэффициент полезного действия ППК равен отношению выходного напряжения к напряжению холостого хода.
На рисунке справа представлен классический фильтр низких частот на RC-цепочке. Частота среза RC-цепочки рассчитывается по формуле
Для схемы на переключаемых конденсаторах частота среза рассчитывается с учётом замены резистора (см. «Замена резисторов в интегральном исполнении» ниже) по формуле
где:
Разновидность операционных усилителей (ОУ). Для борьбы с таким паразитным параметром как напряжение смещения ОУ применяется схема на переключаемых конденсаторах. Она периодически измеряет и «запоминает» напряжение смещения ОУ и вычитает его из входного напряжения. Такое решение позволяет построить недорогие прецизионные ОУ для массового применения. Недостатки такого решения — наличие шума цепей переключения, который однако имеет фиксированный спектр и как следствие может быть легко отфильтрован.
Специфической разновидностью прецизионных усилителей является схема «модулятор-демодулятор», в которой также применяются конденсаторы. Ныне эта разновидность практически не используется.
Известно, что сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника (Закон Ома для однородного участка цепи). В то же время сила тока равна отношению заряда , переносимого через проводник за интервал времени .
где:
Сопротивление цепи рассчитывается по формуле
Перенос заряда через конденсатор по схеме на рис.2 можно рассчитать по формуле
где:
Используя равенства (2) и (3) получаем
где:
Следовательно, сопротивление цепи с переключаемым конденсатором обратно пропорционально произведению частоты переключения конденсатора на значение его ёмкости.
Расчет потерь мощности ППК с помощью эквивалентого резистора
Различные ППК на основе двоичной системы счисления
Для улучшения этой статьи желательно:
|