Теорема обобщается на гильбертовы многообразия в том смысле, что экспоненциальное отображение является универсальным накрытием. При этом полнота понимается в том смысле, что экспоненциальный отображение определено на всём касательном пространстве к точке.
Теорема Картана — Адамара для метрических пространств:метрическое пространствоХ с неположительной кривизной в смысле Александрова является CAT(0)-пространством.
В частности, если Xодносвязно, то любые две точки в нём соединяются единственной геодезической, а значит, X является стягиваемым.
Предположение о неположительной кривизны может быть ослаблено[8]. Назовём метрическое пространство X выпуклым, если для любых двух геодезических a(t) и b(t) функция
является выпуклой функцией от t. Метрическое пространство называется локально выпуклым, если каждая его точка имеет окрестность, которая является выпуклой в этом смысле.
Теорема Картана — Адамара для локально выпуклых пространств формулируется следующим образом:
Если X является локально выпуклым полным связным метрическим пространством, то универсальное накрытие X является выпуклым геодезическим пространством по отношению к индуцированной внутренней метрике.
В частности, универсальное накрытие такого пространства стягиваемо.
↑Hans von Mangoldt. Ueber diejenigen Punkte auf positiv gekrümmten Flächen, welche die Eigenschaft haben, dass die von ihnen ausgehenden geodätischen Linien nie aufhören, kürzeste Linien zu sein. (нем.) // J. Reine Angew. Math.. — 1881. — Bd. 91. — S. 23–53.
↑Rinow, W. Die innere Geometrie der metrischen Raume. Springer, Berlin, Geidelberg, New York, 1961.
↑ 12Gromov, M. Hyperbolic groups. Essays in group theory. (англ.) // Math. Sci. Res. Inst. Publ.. — New York: Springer, 1987. — Vol. 8. — P. 75–263.
↑ 12S. B. Alexander, R. L. Bishop. The Hadamard—Cartan theorem in locally convex metric spaces // Enseign. Math. (2). — 1990. — Т. 36, вып. 3—4. — С. 309—320.