Теорема Громова о группах полиномиального роста утверждает, что все конечнопорождённые группы полиномиального роста почти нильпотентны, то есть, обладают нильпотентной подгруппой конечного индекса.
Теорема доказана Громовым в 1981[1]. В той же статье вводится так называемая сходимость по Громову — Хаусдорфу. Доказательство существенно использует так называемую альтернативу Титса.
Эта статья слишком короткая. |