Теорема Фенхеля утверждает, что вариация поворота любой замкнутой кривой не меньше и равенство достигается только в случае выпуклой плоской кривой. В частности, средняя кривизна замкнутой кривой длины не может быть меньше .
Теорема доказана Вернером Фенхелем.[1]
Обычно доказательство строится на утверждении, что сферическая кривая длины меньше чем лежит в открытой полусфере. Это утверждение можно доказать например применением формулы Крофтона, но известны и более элементарные доказательства.
Остаётся заметить что кривая образованная единичными касательными векторами (касательная индикатриса) к исходной кривой не может лежать в открытой полусфере. Значит её длина не меньше , длина же этой кривой совпадает с интегралом кривизны.