Поль Дирак впервые опубликовал уравнение Дирака в 1928 году и позже (1936) обобщил его на частицы с любым полуцелым спином, прежде чем Фирц и Паули впоследствии нашли те же уравнения в 1939 году и примерно за десять лет до Баргмана и Вигнера.[2]Юджин Вигнер написал статью в 1937 году об унитарных представлениях неоднородной группы Лоренца или группы Пуанкаре.[3] Вигнер отмечает, что Этторе Майорана[4] и Дирак использовали инфинитезимальные операторы и классифицирует представления как неприводимые, факториальные и унитарные.
В 1948 году Валентин Баргман и Вигнер опубликовали уравнения, которые теперь названы в их честь, в статье о теоретико-групповом обсуждении релятивистских волновых уравнений[5].
и является 4-компонентным спинорным полем ранга 2j. Каждый индекс принимает значения 1, 2, 3 или 4, тo есть существует компонент всего спинорного поля , хотя полностью симметричная волновая функция уменьшает количество независимых компонент до . Далее, являются матрицами Дирака, и
В отличие от уравнения Дирака, которое может учитывать действие электромагнитного поля посредством включения слагаемого, описывающего минимальное электромагнитное взаимодействие[англ.],
формализм БВ при попытке учёта электромагнитного взаимодействия содержит внутренние противоречия и трудности. Другими словами, в уравнения БВ невозможно внести изменение , где - электрический заряд частицы и - это электромагнитный потенциал.[10][11] Для исследования электромагнитных взаимодействий в этом случае применяются электромагнитные 4-токи и мультиполи частицы.[12][13]
↑Э. Майорана Релятивистская теория частицы с произвольным внутренним угловым моментом // Л. Мишель, М. Шааф Симметрия в квантовой физике. — М., Мир, 1974. — с. 239-247
↑C.R. Hagen (1970). "The Bargmann–Wigner method in Galilean relativity". Communications in Mathematical Physics. Vol. 18, no. 2. pp. 97—108. Bibcode:1970CMaPh..18...97H. doi:10.1007/BF01646089.
↑Cedric Lorce (2009). "Electromagnetic Properties for Arbitrary Spin Particles: Part 1 ? Electromagnetic Current and Multipole Decomposition". arXiv:0901.4199 [hep-ph].
V. V. Dvoeglazov (2011). "The modified Bargmann-Wigner formalism for higher spin fields and relativistic quantum mechanics". doi:10.1142/S2010194511001218.
D. N. Williams (1965). "The Dirac Algebra for Any Spin"(PDF). Lectures in Theoretical Physics. Vol. 7A. University Press of Colorado. pp. 139—172.
D. G. C. McKeon; T. N. Sherry (2004). "The Bargmann–Wigner Equations in Spherical Space". arXiv:hep-th/0411090.
R. Clarkson; D. G. C. McKeon (2003). "Quantum Field Theory"(PDF). pp. 61—69. Архивировано из оригинала(PDF)30 мая 2009. Дата обращения: 27 октября 2016.