Химическая ионизация (ХИ, англ. CI — Chemical Ionization) — один из методов ионизации анализируемой среды, применямых[1] в масс-спектрометрии[2][3]. Был впервые предложен Бёрнаби Мансоном и Франком Филдом[англ.] в 1966 году[4]. Теоретические основы химической ионизации являются разделом ионно-молекулярной химии[3]. Молекулы газа-реагента (обычно метан или аммиак)[5] подвергаются электронной ионизации с образованием ионов реагента, которые затем реагируют с молекулами анализируемого вещества с образованием ионов анализируемого вещества, пригодного для масс-спектрометрического анализа. Основанная на химической ионизации масс-спектрометрия находит применение при идентефикации и определении структурного и химического состава[6] а также полезна в биохимическом анализе[6]. Образцы анализируемого вещества должны быть в газообразной фазе или, если это жидкие или твёрдые вещества, образцы должны быть испарены перед введением в анализатор.
Процесс химической ионизации сообщает меньше энергии анализируемой молекуле по сравнению и ионизацией электронным ударом, поэтому она приводит к не столь значительной фрагментации[3] и к более простым (менее детальным) масс-спетрам. В некоторых пределах степень фрагментации и тем самым детализация структурной информации может котролироваться выбором иона-реагента[3]. В дополнение к типичным пикам от фрагментированных ионов химическая ионизация обычно приводит к появлению пика от протонированного молекулярного иона масса которого на единицу превышает массу анализируемого вещества, что облегчает измерения молекулярной массы[7]. Таким образом, химическая ионизация полезна как альтернативный метод в случаях, когда электронная ионизация приводит к избыточной фрагментации и пик от молекулярного иона слабо выражен или отсутствует.
Технически химическая ионизация очень похожа на электронную ионизацию. Давление в камере источника химической ионизации составляет примерно 1 Торр[8]. В камеру вводится электронный пучок с энергией 200—1000 эВ[8][9], достигая её центра[9]. В отличие от схемы электронной ионизации магнитная ловушка для электронного пучка может не использоваться, поскольку электроны не распространяются до конца камеры. Многие современные источники могут переключаться с электронной ионизации на химическую и обратно[10].
Химическая ионизация происходит в разреженном газе, как правило метане, изобутане или аммиаке. Газ-реагент ионизируют пучком электронов при давлении примерно 1 mbar. Так как доля молекул газа значительно превышает долю молекул анализируемого вещества, электронный пучак производит преимущественную ионизация газа. Первичные ионы реагента вступают во вторичные ион-молекулярные реакции (смотри ниже) образуя более стабильные ионы-реагенты, которые в конечном счёте сталкиваются с молекулами ионизируемого вещества и ионизирует их. В отличие от столкновения с электронами высоких энергий, столкновение между ионами-реагентами и молекулами анализируемого вещества происходят при тепловых энергиях. Поэтому энергия, которая может пойти на фрагментацию анализируемой молекулы, ограничена экзотермическим эффектом молекулярно-ионной реакции[9], что и приводит к более низкой степени фрагментации.
Реакции в случае, когда газом-реагентом является метан:
Ионы распадаются или, по большей части, реагируют с неионизированными молекулами газа (длина свободного пробега составляет примерно 0,004 см, так что наиболее вероятными являются межмолекулярные реакции):
В случае метана, ион CH5+ является сильной кислотой, которая передает протон анализируемым молекулам M, тем самым ионизуя их:
Так как при химической ионизации образуется множество побочных продуктов ионизации газа, возможно образование аддуктов, например:
Таким образом, происходит мягкая ионизация анализируемых молекул, которая не вызывает значительной фрагментации, в отличие от электронной ионизации.
Выбор газа для химической ионизации определяется его сродством к протону в газовой фазе. Оно возрастает в ряду:
CH4 < С4H10 < NH3
Таким образом, если с помощью метана можно ионизовать практический любые летучий вещества, то с помощью аммиака — только сильные основания, например, амины. Таким образом достигается селективность.
Химическая ионизация позволяет получить спектр молекулярного иона анализируемого вещества, однако затрудняет изучение его структуры из-за отсутствия фрагментации.
Преимущества по сравнению с электронным ударом: — низкая фрагментация, интенсивный пик квазимолекулярного иона M+, который обычно отсутствует при электронном ударе. — Реакционный газ может быть использован в качестве газа-носителя в ГХ/МС — различные газовые реакции обеспечивают широкие возможности использования интуиции при структурном анализе.
Недостатки по сравнению с электронным ударом: — Обычно наблюдается только квазимолекулярный ион в виде [M-1]+, [M+1]+ — частая недостаточная фрагментация затрудняет структурный анализ — малое значение отношения m/z — часто на уровне шума.