Циклический ранг ориентированного графа — мера связности орграфа, предложенная Эгганом и Бучи[англ.][1]. Это понятие интуитивно отражает, насколько близок орграф к направленному ациклическому графу (НАГ, en:DAG), когда циклический ранг НАГ равен нулю, в то время как ориентированный орграф порядка n с петлями в каждой вершине имеет циклический ранг n. Циклический ранг ориентированного графа тесно связан с глубиной дерева неориентированного графа и высотой итерации регулярных языков. Циклический ранг нашёл применение также в вычислениях с разреженными матрицами (см. статью Bodlaender, Gilbert, Hafsteinsson, Kloks, 1995) и логике[2].
Циклический ранг r(G) орграфа G = (V, E) индуктивно определяется следующим образом
Глубина дерева неориентированного графа имеет очень похожее определение с помощью неориентированной связности и связных компонент вместо сильной связности и компонент сильной связности.
Циклический ранг ввёл Эгган[1] в контексте высоты итерации регулярных языков. Циклический ранг переоткрыли Айзенштат и Лю[3] как обобщение неориентированной глубины дерева. Понятие разрабатывалось с начала 1980-х и применялось для работы с разреженными матрицами[4].
Циклический ранг направленного ациклического графа равен 0, в то время как полный орграф порядка n с петлёй в каждой вершине имеет циклический ранг n. Кроме этих двух случаев, известен циклический ранг нескольких других орграфов: неориентированный путь порядка n, который обладает отношением симметрии рёбер и не имеет петель, имеет циклический ранг [5]. Для ориентированного -тора , т.е. прямого произведения двух ориентированных контуров длины m и n, имеем и для m ≠ n[1][6].
Вычисление циклического ранга является сложной задачей. Грубер[7] доказал, что соответствующая задача разрешимости является NP-полной даже для разреженных орграфов с максимальной полустепенью исхода 2. Положительный момент состоит в том, что задача разрешима за время на орграфах с максимальной полустепенью исхода 2 и за время на общих орграфах. Существует аппроксимационный алгоритм с аппроксимационным коэффициентом .
Первое приложение циклического ранга было в теории формальных языков для изучения высоты итерации языка регулярных языков. Эгган[1] установил отношение между теориями регулярных выражений, конечными автоматами и ориентированными графами. В последующих годах это отношение стало известно как теорема Эггана[8]. В теории автоматов недетерминированный конечный автомат с ε-переходами (ε-НКА) определяется как 5-ка, (Q, Σ, δ, q0, F), состоящая из
Слово w ∈ Σ* допускается ε-НКА автоматом, если существует ориентированный путь из начального состояния q0 в некоторое конечное состояние из F используя рёбра из δ, так что конкатенация всех меток вдоль пути даёт слово w. Множество всех слов над Σ*, допускаемых автоматом, является языком, принимаемым автоматом A.
Когда говорят о свойствах орграфов недетерминированного конечного автомата A с множеством состояний Q, естественным образом подразумевается орграф с множеством вершин Q, порождённый отношением переходов.
Доказательства этой теоремы дали Эгган[1] и, позднее, Сакарович[8].
Другое приложение этой концепции лежит в области вычислений с разреженными матрицами, а именно, для использования вложенного рассечения[англ.] при вычислении разложения Холецкого (симметричной) матрицы с помощью параллельного алгоритма. Заданную разреженную матрицу M можно интерпретировать как матрицу смежности некоторого симметричного орграфа G с n вершинами, так что ненулевые элементы матрицы соответствуют один-к-одному рёбрам графа G. Если циклический ранг орграфа G не превосходит k, то разложение Холецкого матрицы M может быть вычислено максимум за k шагов на параллельном компьютере с процессорами[9].
Для улучшения этой статьи желательно:
|