An
expert on the subject should have a look at this article or section.
Please help recruit one or improve this article yourself. See the talk page for details.
In complex analysis , contour integration is a way to calculate an integral around a contour on the complex plane . In other words, it is a way of integrating along the complex plane.
More specifically, given a complex-valued function
f
{\displaystyle f}
and a contour
C
{\displaystyle C}
, the contour integral of
f
{\displaystyle f}
along
C
{\displaystyle C}
is written as
∫
C
f
(
z
)
d
z
{\displaystyle \textstyle \int _{C}f(z)\,dz}
or
∮
C
f
(
z
)
d
z
{\displaystyle \textstyle \oint _{C}f(z)\,dz}
.[ 1] [ 2]
For a standard contour integral, we can evaluate it by using the residue theorem . This theorem states that
∮
C
f
(
z
)
d
z
=
2
π
i
⋅
Res
f
(
z
)
{\displaystyle \oint _{C}f(z)\,dz=2\pi i\cdot {\text{Res}}f(z)}
where
Res
{\displaystyle {\text{Res}}}
is the residue of the function
f
(
z
)
{\displaystyle f(z)}
,
C
{\displaystyle C}
is the contour located on the complex plane . Here,
f
(
z
)
{\displaystyle f(z)}
is the integrand of the function, or part of the integral to be integrated.
The following examples illustrate how contour integrals can be calculated using the residue theorem.
∮
C
e
z
z
3
d
z
=
2
π
i
⋅
Res
(
e
z
z
3
)
=
2
π
i
⋅
1
2
=
π
i
{\displaystyle {\begin{aligned}&\oint _{C}{\frac {e^{z}}{z^{3}}}\,dz\\&=2\pi i\cdot {\text{Res}}\left({\frac {e^{z}}{z^{3}}}\right)\\&=2\pi i\cdot {\frac {1}{2}}\\&=\pi i\end{aligned}}}
∮
C
1
z
3
d
z
=
2
π
i
Res
f
(
z
)
=
2
π
i
Res
1
z
3
=
2
π
i
⋅
0
=
0
{\displaystyle {\begin{aligned}&\oint _{C}{\frac {1}{z^{3}}}\,dz\\&=2\pi i\,{\text{Res}}f(z)\\&=2\pi i\,{\text{Res}}{\frac {1}{z^{3}}}\\&=2\pi i\cdot 0\\&=0\end{aligned}}}
To solve multivariable contour integrals (contour integrals on functions of several variables), such as surface integrals, complex volume integrals and higher order integrals , we must use the divergence theorem . For right now, let
∇
{\displaystyle \nabla }
be interchangeable with
Div
{\displaystyle {\text{Div}}}
. These will both serve as the divergence of the vector field written as
F
{\displaystyle \mathbf {F} }
. This theorem states that:
∫
⋯
∫
U
⏟
n
Div
(
F
)
d
V
=
∮
⋯
∮
∂
U
⏟
n
−
1
F
⋅
n
d
S
{\displaystyle \underbrace {\int \cdots \int _{U}} _{n}{\text{Div}}(\mathbf {F} )\,dV=\underbrace {\oint \cdots \oint _{\partial U}} _{n-1}\mathbf {F} \cdot \mathbf {n} \,dS}
In addition, we also need to evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
, where
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
is an alternate notation of
div
F
{\displaystyle {\text{div}}\,\mathbf {F} }
. [ 1] The divergence of any dimension can be described as
Div
F
=
∇
⋅
F
=
(
∂
∂
u
,
∂
∂
x
,
∂
∂
y
,
∂
∂
z
,
⋯
)
⋅
(
F
u
,
F
x
,
F
y
,
F
z
⋯
)
=
(
∂
F
u
∂
u
+
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
⋯
)
{\displaystyle {\begin{aligned}&\operatorname {Div} {\mathbf {F} }\\\\&=\nabla \cdot {\textbf {F}}\\\\&=\left({\frac {\partial }{\partial u}},{\frac {\partial }{\partial x}},{\frac {\partial }{\partial y}},{\frac {\partial }{\partial z}},\cdots \right)\cdot (F_{u},F_{x},F_{y},F_{z}\cdots )\\\\&=\left({\frac {\partial F_{u}}{\partial u}}+{\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\cdots \right)\end{aligned}}}
The following examples illustrate the use of divergence theorem in the calculation of multivariate contour integrals.
Let the vector field
F
=
sin
(
2
x
)
+
sin
(
2
y
)
+
sin
(
2
z
)
{\displaystyle \mathbf {F} =\sin(2x)+\sin(2y)+\sin(2z)}
be bounded by the following conditions
0
≤
x
≤
1
0
≤
y
≤
3
π
−
1
≤
z
≤
4
{\displaystyle {0\leq x\leq 1}\quad {0\leq y\leq 3\pi }\quad {-1\leq z\leq 4}}
The corresponding double contour integral would be set up as such:
{\displaystyle }
S
{\displaystyle {\scriptstyle S}}
F
⋅
n
d
S
{\displaystyle {\mathbf {F} \cdot n}\,{\rm {d}}\,S}
We now evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
by setting up the corresponding triple integral:
=
∭
V
(
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
)
d
V
=
∭
V
(
∂
sin
(
2
x
)
∂
x
+
∂
sin
(
2
y
)
∂
y
+
∂
sin
(
2
z
)
∂
z
)
d
V
=
∭
V
=
2
(
cos
(
2
x
)
+
cos
(
2
y
)
+
cos
(
2
z
)
)
d
V
{\displaystyle {\begin{aligned}&=\iiint _{V}\left({\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\right)\,dV\\\\&=\iiint _{V}\left({\frac {\partial \sin(2x)}{\partial x}}+{\frac {\partial \sin(2y)}{\partial y}}+{\frac {\partial \sin(2z)}{\partial z}}\right)\,dV\\\\&=\iiint _{V}{=2(\cos(2x)+\cos(2y)+\cos(2z))}\,dV\end{aligned}}}
From this, we can now evaluate the integral as follows:
∫
0
1
∫
0
3
∫
−
1
4
2
(
cos
(
2
x
)
+
cos
(
2
y
)
+
cos
(
2
z
)
)
d
x
d
y
d
z
=
∫
0
1
∫
0
3
(
10
cos
(
2
y
)
+
sin
(
8
)
+
sin
(
2
)
+
10
cos
(
z
)
)
d
y
d
z
=
∫
0
1
(
30
cos
(
2
z
)
+
3
sin
(
2
)
+
3
sin
(
8
)
+
5
sin
(
6
)
)
d
z
=
18
sin
(
2
)
+
3
sin
(
8
)
+
5
sin
(
6
)
{\displaystyle {\begin{aligned}&\int _{0}^{1}\int _{0}^{3}\int _{-1}^{4}2(\cos(2x)+\cos(2y)+\cos(2z))\,dx\,dy\,dz\\\\&=\int _{0}^{1}\int _{0}^{3}(10\cos(2y)+\sin(8)+\sin(2)+10\cos(z))\,dy\,dz\\\\&=\int _{0}^{1}(30\cos(2z)+3\sin(2)+3\sin(8)+5\sin(6))\,dz\\\\&=18\sin(2)+3\sin(8)+5\sin(6)\end{aligned}}}
Given the vector field
F
=
u
4
+
x
5
+
y
6
+
z
−
3
{\displaystyle \mathbf {F} =u^{4}+x^{5}+y^{6}+z^{-3}}
and
n
{\displaystyle n}
being the fourth dimension. Let this vector field be bounded by the following:
0
≤
x
≤
1
−
10
≤
y
≤
2
π
4
≤
z
≤
5
−
1
≤
u
≤
3
{\displaystyle {0\leq x\leq 1}\quad {-10\leq y\leq 2\pi }\quad {4\leq z\leq 5}\quad {-1\leq u\leq 3}}
To evaluate this, we use the divergence theorem as stated before, and evaluate
∇
⋅
F
{\displaystyle \nabla \cdot \mathbf {F} }
afterwards. Let
d
V
=
d
x
d
y
d
z
d
u
{\displaystyle \,dV=\,dx\,dy\,dz\,du}
, then:
S
{\displaystyle {\scriptstyle S}}
F
⋅
n
d
S
{\displaystyle \mathbf {F} \cdot n\,{\rm {d}}{\mathbf {S}}}
=
⨌
V
(
∂
F
u
∂
u
+
∂
F
x
∂
x
+
∂
F
y
∂
y
+
∂
F
z
∂
z
)
d
V
=
⨌
V
(
∂
u
4
∂
u
+
∂
x
5
∂
x
+
∂
y
6
∂
y
+
∂
z
−
3
∂
z
)
d
V
=
⨌
V
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
{\displaystyle {\begin{aligned}&=\iiiint _{V}\left({\frac {\partial F_{u}}{\partial u}}+{\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}\right)\,dV\\\\&=\iiiint _{V}\left({\frac {\partial u^{4}}{\partial u}}+{\frac {\partial x^{5}}{\partial x}}+{\frac {\partial y^{6}}{\partial y}}+{\frac {\partial z^{-3}}{\partial z}}\right)\,dV\\\\&=\iiiint _{V}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\end{aligned}}}
From this, we now can evaluate the integral:
⨌
V
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
=
∫
0
1
∫
−
10
2
π
∫
4
5
∫
−
1
3
4
u
3
z
4
+
5
x
4
z
4
+
5
y
4
z
4
−
3
z
4
d
V
=
∫
0
1
∫
−
10
2
π
∫
4
5
(
4
(
3
u
4
z
3
+
3
y
6
+
91
z
3
+
3
)
3
z
3
)
d
y
d
z
d
u
=
∫
0
1
∫
−
10
2
π
(
4
u
4
+
743440
21
+
4
z
3
)
d
z
d
u
=
∫
0
1
(
−
1
2
π
2
+
1486880
π
21
+
8
π
u
4
+
40
u
4
+
371720021
1050
)
d
u
=
371728421
1050
+
14869136
π
3
−
105
210
π
2
≈
576468.77
{\displaystyle {\begin{aligned}&\iiiint _{V}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\int _{4}^{5}\int _{-1}^{3}{\frac {4u^{3}z^{4}+5x^{4}z^{4}+5y^{4}z^{4}-3}{z^{4}}}\,dV\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\int _{4}^{5}\left({\frac {4(3u^{4}z^{3}+3y^{6}+91z^{3}+3)}{3z^{3}}}\right)\,dy\,dz\,du\\\\&=\int _{0}^{1}\int _{-10}^{2\pi }\left(4u^{4}+{\frac {743440}{21}}+{\frac {4}{z^{3}}}\right)\,dz\,du\\\\&=\int _{0}^{1}\left(-{\frac {1}{2\pi ^{2}}}+{\frac {1486880\pi }{21}}+8\pi u^{4}+40u^{4}+{\frac {371720021}{1050}}\right)\,du\\\\&={\frac {371728421}{1050}}+{\frac {14869136\pi ^{3}-105}{210\pi ^{2}}}\\\\&\,\approx {576468.77}\end{aligned}}}
Thus, we can evaluate a contour integral of the fourth dimension.
↑ 1.0 1.1 "List of Calculus and Analysis Symbols" . Math Vault . 2020-05-11. Retrieved 2020-09-18 .
↑ "Contour Integration | Brilliant Math & Science Wiki" . brilliant.org . Retrieved 2020-09-18 .