ขั้นตอนวิธีฮอปครอฟท์-คาร์พ (อังกฤษ: Hopcroft–Karp algorithm) เป็นขั้นตอนวิธี ที่มีข้อมูลนำเข้าเป็นกราฟสองส่วน และมีผลลัพธ์เป็นจำนวนการจับคู่ที่มากที่สุด นั่นคือเซ็ตของเส้นเชื่อมที่มากที่สุดที่เป็นไปได้โดยที่ไม่มีเส้นเชื่อมสองเส้นที่ต่างกันใด ๆ เชื่อมไปยังจุดเดียวกัน ใช้เวลาในการทำงานเป็น
ในกรณีแย่สุด, โดย
คือ สัญกรณ์โอใหญ่,
คือ จำนวนของเส้นเชื่อมในกราฟ, และ
คือจำนวนจุดในกราฟ สำหรับกราฟซับซ้อน ใช้เวลาในการทำงานเป็น
และสำหรับกราฟแบบสุ่ม ใช้เวลาในการทำงานเป็นเชิงเส้น
ขั้นตอนวิธีฮอปครอฟท์-คาร์พคิดค้นโดยจอห์น ฮอปครอฟท์และริชาร์ด คาร์พ[1] เป็นขั้นตอนวิธีสำหรับการจับคู่เช่นเดียวกับขั้นตอนวิธีฮังกาเรียนและเอ็ดมอนส์ (1993) harvtxt error: no target: CITEREFเอ็ดมอนส์1993 (help)[2] ขั้นตอนวิธีฮอปครอฟท์-คาร์พทำโดยการเพิ่มขนาดของการจับคู่ซ้ำ ๆ โดยการหาวิถีแต่งเติม ใช้การวนซ้ำ
รอบ โดนหลักการเดียวกันนี้ยังใช้พัฒนาขั้นตอนวิธีที่ซับซ้อนขึ้นสำหรับการจับคู่ในกราฟที่ไม่ใช่กราฟสองส่วน โดยใช้เวลาในการทำงานเหมือนกับขั้นตอนวิธีฮอปครอฟท์-คาร์พ
แนวคิดพื้นฐานของขั้นตอนวิธีนี้ขึ้นอยู่กับวิถีแต่งเติม
จุดอิสระ คือ จุดที่ไม่เชื่อมต่อกับเส้นเชื่อมใด ๆ ในการจับคู่
วิถีแต่งเติม คือ วิถีที่เริ่มต้นจากจุดอิสระไปยังจุดอิสระ โดยวิถีนี้ จะผ่านเส้นเชื่อมทั้งที่มีการจับคู่อยู่แล้วและยังไม่มีการจับคู่สลับกันไป
คือ ขนาดของการจับคู่
คือ วิถีแต่งเติมที่สัมพันธ์กับ
จะได้ว่า ผลต่างสมมาตรของเซ็ตของเส้นเชื่อม
ทำให้เกิดการจับคู่ที่มีขนาด
ดังนั้น จะใช้วิถีแต่งเติมเพื่อขยายขนาดของการจับคู่ได้
ในทางกลับกัน สมมติว่าการจับคู่
ไม่ใช่วิธีที่ดีที่สุด ให้ผลต่างสมมาตร
โดย
คือการจับคู่ที่ดีที่สุด จะได้
คือวิถีแต่งเติมหลายๆวิถีที่ไม่ต่อเนื่องกัน และจำนวนวิถีใน
เท่ากับความแตกต่างของขนาดของ
และ
ดังนั้น จะหยุดขั้นตอนวิธีนี้และจะได้การจับคู่
ที่ดีที่สุดเมื่อไม่สามารถหาวิถีแต่งเติมได้
วิถีแต่งเติมในปัญหาการจับคู่ มีลักษณะคล้ายกับวิถีแต่งเติมในปัญหาการไหลมากสุด นั่นคือวิถีแต่งเติมจะเพิ่มขนาดของการไหล โดยสามารถเปลี่ยนแปลงปัญหาการจับคู่กราฟสองส่วนเป็นปัญหาการไหลมากสุดได้ เช่น การเปลี่ยนวิถีทดแทนในปัญหาการจับคู่เป็นวิถีแต่งเติมในปัญหาการไหล[3] การนำเทคนิคที่ใช้ในขั้นตอนวิธีฮอปครอฟท์-คาร์พ ไปใช้ในข่ายงานการไหล รู้จักกันในชื่อขั้นตอนวิธีของดีนิซ
ให้
และ
เป็นเซ็ตที่แบ่งกราฟสองส่วน
ออกเป็นสองส่วน และให้เซ็ต
แสดงการจับคู่ใด ๆ จาก
ไปยัง
ขั้นตอนวิธีนี้แบ่งการทำงานเป็นวัฏภาค โดยทุกๆวัฏภาคมีขั้นตอนดังนี้
- ใช้การค้นหาตามแนวกว้างแบ่งจุดในกราฟเป็นชั้น โดยเริ่มต้นค้นหาจากจุดอิสระใน
และถือว่าจุดที่เริ่มค้นหาเป็นชั้นแรก ในระดับแรกของการค้นหาตามแนวกว้างจะมีการท่องไปยังเส้นเชื่อมที่ไม่มีการจับคู่เท่านั้น (นั่นคือ
ไม่มีการเชื่อมต่อกับเส้นเชื่อมที่มีการจับคู่ใดๆ) และในระดับต่อๆไปของการค้นหาตามแนวกว้าง การท่องไปในเส้นเชื่อมจะต้องทำระหว่างเส้นเชื่อมที่มีการจับคู่และเส้นเชื่อมที่ไม่มีการจับคู่ นั่นคือ เมื่อการค้นหาสิ้นสุดลง จากจุดใน
จะท่องไปในเส้นเชื่อมที่ไม่มีการจับคู่เท่านั้น แต่จากจุดใน
จะท่องไปในเส้นเชื่อมที่มีการจับคู่แล้วเท่านั้น การค้นหาจะสิ้นสุดเมื่อพบชั้นแรกที่มีจุดอิสระใน
ที่ถูกเข้าถึงแล้วอย่างน้อยหนึ่งจุด กำหนดให้เป็นชั้น ![{\displaystyle k}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40)
- นำทุกๆจุดอิสระใน
ที่ระดับชั้น
ใส่ไปในเซ็ต
นั่นคือ จุด
จะถูกใส่ใน
ก็ต่อเมื่อจุดนั้นถูกพบในวิถีแต่งเติมที่สั้นที่สุดซึ่งได้มาจากการค้นหาตามแนวกว้าง
- ทำการหาจำนวนวิถีแต่งเติมความยาว
ที่มากที่สุดที่ไม่ติดกัน โดยการค้นหาตามแนวลึกจาก
ไปยังจุดอิสระใน
โดยการใช้ชั้นจากการค้นหาตามแนวกว้างเพื่อเป็นแนวทางการค้นหา การค้นหาตามแนวลึกจะค้นไปยังจุดที่ยังไม่เคยพบในชั้นก่อนหน้า และในต้นไม้ของค้นหาตามแนวลึก จุดเชื่อมต่อใดๆในวิถีที่ได้จะเชื่อมต่อระหว่างเส้นเชื่อมที่ถูกจับคู่แล้วและเส้นเชื่อมที่ยังไม่ได้จับคู่เท่านั้น เมื่อพบวิถีแต่งเติมที่เริ่มจากจุดใน
แล้ว จะทำการค้นหาตามแนวลึกใหม่ โดยทำจากจุดเริ่มต้นถัดไปใน ![{\displaystyle F}](https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57)
- ทุกๆวิถีที่ได้มาจะถูกนำไปเพิ่มขนาดของ
![{\displaystyle M}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd)
ขั้นตอนวิธีนี้จะสิ้นสุดเมื่อไม่พบวิถีแต่งเติมจากการค้นหาตามแนวกว้างในวัฏภาคใดๆ
แต่ละวัฏภาคประกอบด้วยการค้นหาตามแนวกว้างหนึ่งครั้งและการค้นหาตามแนวลึกหนึ่งครั้ง ดังนั้นในวัฏภาคหนึ่งๆจะใช้เวลาเชิงเส้น เพราะฉะนั้น สำหรับ
วัฏภาคแรก ในกราฟที่มี
จุด และ
เส้นเชื่อม จะใช้เวลาทั้งหมด
โดยแสดงได้ว่า ในทุกๆวัฏภาค ความยาวของวิถีแต่งเติมที่สั้นที่สุดจะมีการเพิ่มความยาวขึ้นเสมอ นั่นคือ ในแต่ละวัฏภาค วิถีแต่งเติมอื่นๆที่เหลืออยู่ต้องมีความยาวมากกว่าความยาวปัจจุบันเสมอ เพราะฉะนั้นเมื่อ
วัฏภาคแรกในขั้นตอนวิธีสิ้นสุดลง วิถีแต่งเติมที่สั้นที่สุดจะมีเส้นเชื่อมอย่างน้อย
เส้นเชื่อม อย่างไรก็ตามผลต่างสมมาตรระหว่างการจับคู่ที่ดีที่สุดและการจับคู่
ที่ได้มาจากแต่ละวัฏภาค จะก่อให้เกิดวิถีแต่งเติมหลายๆวิถีที่ไม่ต่อเนื่องกัน นั่นคือ ถ้าแต่ละวิถีในเซ็ตมีความยาวอย่างน้อยเท่ากับ
แล้ว จะมีวิถีได้อย่างมากที่สุดจำนวน
วิถี และขนาดของการจับคู่ที่ดีที่สุดจะมีความแตกต่างจากขนาดของ
ได้อย่างมากเท่ากับ
เส้นเชื่อม และเนื่องจากว่าทุกวัฏภาคของขั้นตอนวิธีนี้จะมีการเพิ่มขนาดของการจับคู่เสมอ ดังนั้นก่อนที่ขั้นตอนวิธีจะสิ้นสุด จะมีวัฏภาคเพิ่มได้อย่างมากที่สุดอีกจำนวน
วัฏภาค
จะได้ว่า ขั้นตอนวิธีนี้มีการทำงานอย่างมากที่สุด
วัฏภาค ดังนั้น จะได้เวลาทั้งหมดในการทำงานคือ
สำหรับกรณีแย่สุด
อย่างไรก็ตาม ในหลายๆกรณี เวลาที่ใช้โดยขั้นตอนวิธีนี้อาจจะเร็วกว่าในการวิเคราะห์กรณีแย่สุด เช่น ในกรณีเฉลี่ยสำหรับกราฟกระจายสองส่วนแบบกราฟสุ่ม Bast et al. (2006) harvtxt error: no target: CITEREFBastMehlhornSchaferTamaki2006 (help)[4] ได้แสดงว่า ในการจับคู่ที่ไม่ใช่การจับคู่ที่ดีที่สุด วิถีแต่งเติมที่ได้มีโอกาสสูงที่จะมีความยาวเป็นลอการิทึม (พัตนาจากผลของ Motwani (1994) harvtxt error: no target: CITEREFMotwani1994 (help)[5]) ดังนั้น สำหรับกราฟเหล่านี้ ขั้นตอนวิธีฮอปครอฟท์-คาร์พ จะมี
วัฏภาคและจะมีเวลาในการทำงานเท่ากับ
เปรียบเทียบกับขั้นตอนวิธีจับคู่กราฟสองส่วนอื่นๆ
[แก้]
สำหรับกราฟกระจายขั้นตอนวิธีฮอปครอฟท์-คาร์พ เป็นขั้นตอนวิธีที่มีประสิทธิภาพดีที่สุดในกรณีแย่สุด แต่สำหรับกราฟซับซ้อนขั้นตอนวิธีโดย Alt et al. (1991) harvtxt error: no target: CITEREFAltBlumMehlhornPaul1991 (help)[6] สามารถทำงานได้ดีกว่าเล็กน้อย คือ
โดยเป็นขั้นตอนวิธีที่มีพื้นฐานจากขั้นตอนวิธีการไหลมากสุดดัน-ติดป้ายซ้ำซึ่งหลังจากการจับคู่โดยขั้นตอนวิธีนี้แล้วจะสลับมาใช้วิธีฮอปครอฟท์-คาร์พ
มีผู้ทดลองเปรียบเทียบขั้นตอนวิธีจับคู่กราฟสองส่วน ผลลัพธ์ที่ได้ปรากฏว่าขั้นตอนวิธีฮอปครอฟท์-คาร์พไม่ดีเหมือนกับในทฤษฎี เมื่อเทียบกับแผนการทางกว้างและแผนการทางลึกเพื่อหาวิถีแต่งเติม และเทคนิกดัน-ติดป้ายซ้ำ[7][8][9][10]
กราฟที่ไม่ใช่กราฟสองส่วน
[แก้]
การหาจำนวนสมาชิกจับคู่มากสุดในกราฟที่ไม่ใช่กราฟสองส่วน สามารถใช้แนวคิดเดียวกับการหาจำนวนมากสุดของวิถีแต่งเติมที่สั้นที่สุดได้ ดังนั้นจะได้ขั้นตอนวิธีที่มี
วัฏภาค อย่างไรก็ตาม สำหรับกราฟที่ไม่ใช่กราฟสองส่วน การหาวิถีแต่งเติมในแต่ละวัฏภาคทำได้ยากและช้ากว่า Micali & Vazirani (1980) harvtxt error: no target: CITEREFMicaliVazirani1980 (help)[11] ได้แสดงถึงขั้นตอนวิธีในแต่ละวัฏภาคโดยใช้เวลาเชิงเส้นในกราฟที่ไม่ใช่กราฟสองส่วน ซึ่งใช้เวลาเท่ากับขั้นตอนวิธีฮอปครอฟท์-คาร์พ แต่เทคนิกที่ไมคาไล-วาซิรานีใช้นั้นมีความซับซ้อนและยังไม่ได้รับการพิสูจน์อย่างสมบูรณ์ นอกจากนี้ยังมีขั้นตอนวิธีที่อื่น ๆ อีก [12]
1 /*
2 G = G1 ∪ G2 ∪ {จุดว่าง}
3 G1 และ G2 คือส่วนย่อยในกราฟสองส่วน และ จุดว่าง เป็นจุดพิเศษ
4 */
5
6 ฟังก์ชัน ค้นหาตามแนวกว้าง()
7 สำหรับทุกๆจุด v ใน G1
8 ถ้า คู่ของ v เท่ากับ จุดว่าง
9 กำหนด ระยะทางของ v เป็น 0
10 เพิ่ม v ลงในแถวคอย
11 ไม่เช่นนั้น
12 กำหนด ระยะทางของ v เป็น ∞
13 กำหนด ระยะทางของ จุดว่าง เป็น ∞
14 ในขณะที่ แถวคอยไม่ว่าง
15 กำหนด v เป็น จุดหน้าสุดของแถวคอย และนำจุดหน้าสุดของแถวคอยออกไป
16 สำหรับทุกๆจุด u ที่มีเส้นเชื่อมกับ v
17 ถ้า ระยะทางของคู่ของ u เท่ากับ ∞
18 กำหนด ระยะทางของคู่ของ u เป็น ระยะทางของ v + 1
29 เพิ่ม คู่ของ u ลงในแถวคอย
20 คืนค่า ระยะทางของจุดว่างเท่ากับ ∞ ใช่หรือไม่
21
22 ฟังก์ชัน ค้นหาตามแนวลึก (v)
23 ถ้า v ไม่เท่ากับ จุดว่าง
24 สำหรับทุกๆจุด u ที่มีเส้นเชื่อมกับ v
25 ถ้า ระยะทางของคู่ของ u เท่ากับ ระยะทางของ v + 1
26 ถ้า ค้นหาตามแนวลึก(คู่ของ u) เป็นจริง
27 กำหนด คู่ของ u เป็น v
28 กำหนด คู่ของ v เป็น u
39 คืนค่า จริง
30 กำหนด ระยะทางของ v เป็น ∞
31 คืนค่า เท็จ
32 คืนค่า จริง
33
34 ฟังก์ชัน ฮอปครอฟท์-คาร์พ
35 สำหรับทุกๆจุด v ใน G
36 กำหนด คู่ของ v เป็น จุดว่าง
37 กำหนด จำนวนการจับคู่ เป็น 0
38 ในขณะที่ ค้นหาตามแนวกว้าง() เป็นจริง
49 สำหรับทุกๆจุด v ใน G1
40 ถ้า คู่ของ v เท่ากับ จุดว่าง
41 ถ้า ค้นหาตามแนวลึก(v) เป็นจริง
42 กำหนด จำนวนการจับคู่ เป็น จำนวนการจับคู่ + 1
44 คืนค่า จำนวนการจับคู่
- ↑ Hopcroft, John E harvtxt error: no target: CITEREFHopcroft,_John_E (help);Karp, Richard M (1973) harvtxt error: no target: CITEREFKarp,_Richard_M1973 (help), An
algorithm for maximum matchings in bipartite graphs, SIAM Journal on Computing 2 (4): หน้า 225–231.
- ↑ Edmonds (1993) harvtxt error: no target: CITEREFEdmonds1993 (help), "Paths, Trees and Flowers", Canadian J. Math 17: หน้า 449–467.
- ↑ Ahuja, Magnanti & Orlin (1993) harvtxt error: no target: CITEREFAhujaMagnantiOrlin1993 (help), Network Flows: Theory, Algorithms and Applications, Prentice-Hall, บท 12.3, bipartite cardinality matching problem, หน้า 469–470.
- ↑ Bast et al. (2006) harvtxt error: no target: CITEREFBastMehlhornSchaferTamaki2006 (help), "Matching algorithms are fast in sparse random graphs", Theory of Computing Systems 39 (1): หน้า 3–14.
- ↑ Motwani (1994) harvtxt error: no target: CITEREFMotwani1994 (help), "Average-case analysis of algorithms for matchings and related problems", Journal of the ACM 41 (6): หน้า 1329–1356.
- ↑ Alt et al. (1991) harvtxt error: no target: CITEREFAltBlumMehlhornPaul1991 (help), "Computing a maximum cardinality matching in a bipartite graph in time
", Information Processing Letters 37 (4): หน้า 237–240.
- ↑ Chang & McCormick (1990) harvtxt error: no target: CITEREFChangMcCormick1990 (help), A faster implementation of a bipartite cardinality matching algorithm, Tech. Rep. 90-MSC-005, Faculty of Commerce and Business Administration, Univ. of British Columbia.
- ↑ Darby-Dowman (1980) harvtxt error: no target: CITEREFDarby-Dowman1980 (help), The exploitation of sparsity in large scale linear programming problems – Data structures and restructuring algorithms, Ph.D. thesis, Brunel University. As cited by Setubal (1996) harvtxt error: no target: CITEREFSetubal1996 (help).
- ↑ Setubal (1993) harvtxt error: no target: CITEREFSetubal1993 (help), "New experimental results for bipartite matching", Proc. Netflow93, Dept. of Informatics, Univ. of Pisa, หน้า 211–216.
- ↑ Setubal (1996) harvtxt error: no target: CITEREFSetubal1996 (help), Sequential and parallel experimental results with bipartite matching algorithms, Tech. Rep. IC-96-09, Inst. of Computing, Univ. of Campinas.
- ↑ Micali & Vazirani (1980) harvtxt error: no target: CITEREFMicaliVazirani1980 (help), An
algorithm for finding maximum matching in general graphs", Proc. 21st IEEE Symp. Foundations of Computer Science, หน้า 17–27.
- ↑ Blum (2001) harvtxt error: no target: CITEREFBlum2001 (help), A Simplified Realization of the Hopcroft-Karp Approach to Maximum Matching in General Graphs, Tech. Rep. 85232-CS, Computer Science Department, Univ. of Bonn.