GeometrideBarrow eşitsizliği, bir üçgen içindeki rastgele bir nokta alındığında, bu nokta ile üçgenin köşeleri ve üçgenin kenarlarındaki belirli noktalar arasındaki mesafeleri ilişkilendiren bir eşitsizliktir. Adını Amerikalı bir matematikçi olan David Francis Barrow'dan almıştır.
, üçgeninin içinde rastgele bir nokta olsun. ve 'den, , ve 'yi, , ve 'nin açıortaylarının sırasıyla , , kenarlarıyla kesiştiği noktalar olarak tanımlayın. Ardından Barrow eşitsizliği şunu belirtir:[1]
Barrow eşitsizliği dışbükey çokgenlere kadar genişletilebilir. Köşeleri olan dışbükey bir çokgen için çokgenin içindeki rastgele bir nokta ve , açıortayları ile ilişkili çokgen kenarlarının kesişimleri olsun, ardından aşağıdaki eşitsizlik geçerlidir:[2][3]
Burada sekant fonksiyonunu belirtir. Üçgen durumu, yani için olduğundan eşitsizlik, Barrow eşitsizliğine dönüşür.
Barrow eşitsizliği, , ve 'nin noktasından üçgenin kenarlarına olan üç uzaklık ile değiştirilmesi haricinde aynı biçime sahip olan Erdős-Mordell eşitsizliğini güçlendirir. Adını David Francis Barrow'dan almıştır. Barrow'un bu eşitsizliğin kanıtı, 1937'de, Erdős-Mordell eşitsizliğini kanıtlayan American Mathematical Monthly dergisinde ortaya atılan bir probleme çözüm olarak yayınlandı.[1] 1961 gibi erken bir tarihte "Barrow eşitsizliği" olarak adlandırıldı.[4]
^Hans-Christof Lenhard: "Verallgemeinerung und Verschärfung der Erdös-Mordellschen Ungleichung für Polygone". In: Archiv für Mathematische Logik und Grundlagenforschung, Band 12, S. 311–314, doi:10.1007/BF01650566 (Almanca).
Malesevic, Branko & Petrovic, Maja. (2014). Barrow's Inequality and Signed Angle Bisectors. Journal of Mathematical Inequalities. 10.7153/jmi-08-40., Makale 10 Kasım 2020 tarihinde Wayback Machine sitesinde arşivlendi. veya Makale 10 Ağustos 2017 tarihinde Wayback Machine sitesinde arşivlendi.
Liu, Jian. (2016). Refinements of the Erdös-Mordell inequality, Barrow’s inequality, and Oppenheim’s inequality. Journal of Inequalities and Applications. 2016. 10.1186/s13660-015-0947-2., Makale